MP Board Class 11th Maths Solutions Chapter 7 क्रमचय और संचयं Ex 7.3
प्रश्न 1.
1 से 9 तक के अंकों को प्रयोग करके कितनी 3 अंकीय संख्याएं बनाई जा सकती हैं, यदि किसी भी अंक को दोहराया नहीं गया है?
हल:
3 अंकीय संख्या में तीन स्थान होते हैं : इकाई, दहाई और सैकड़ा। इकाई के स्थान को 9 तरीकों से, दहाई के स्थान को 8 तरीकों से और सैकड़े के स्थान को 7 तरीकों से भरा जा सकता है।
∴ 3 अंकीय संख्याओं की संख्या = 9 x 8 x 7 = 504.
प्रश्न 2.
किसी भी अंक को दोहराए बिना कितनी 4 अंकीय संख्याएँ होती हैं?
हल:
0 से 9 तक कुल 10 अंक हैं।
10 में से 4 अंक लेकर संख्याओं की संख्या = \(10 p_{4}\)
= 10 x 9 x 8 x 7 = 5040
इनमें वे संख्याएं सम्मिलित हैं जिनमें हजार के स्थान पर 0 है।
0 को हजार के स्थान पर रखने पर और शेष स्थानों पर कोई तीन अंक रखने पर कुल संख्याओं की संख्या = \(^{9} P_{3}\)
= 9 x 8 x 7 = 504
चार अंकीय संख्याओं की संख्या = 5040 – 504 = 4536.
प्रश्न 3.
अंक 1, 2, 3, 4, 6, 7 को प्रयुक्त करने से कितनी 3 अंकीय सम संख्याएँ बनाई जा सकती हैं, यदि कोई भी अंक दोहराया नहीं गया है?
हल:
2, 4, 6 में से किसी एक को इकाई के स्थान पर रखने से सम संख्या बनती है।
∴ इकाई का स्थान 3 तरीकों से भरा जा सकता है।
दहाई के स्थान को 5 तरीकों से और सैकड़े के स्थान को 4 तरीकों से भरा जा सकता है।
∴ 3 अंकीय सम संख्याओं की संख्या = 3 x 5 x 4 = 60.
प्रश्न 4.
अंक 1, 2, 3, 4, 5 के उपयोग द्वारा कितनी 4 अंकीय संख्याएँ बनाई जा सकती हैं, यदि कोई भी अंक दोहराया नहीं गया है? इनमें से कितनी सम संख्याएँ होंगी ?
हल:
(i) 5 में से 4 अंक लेकर संख्याओं की संख्या = \(^{5} P_{4}\)
= 5 x 4 x 3 x 2 = 120
(ii) इकाई के स्थान पर 2 या 4 रखने से संख्या सम बनती है।
इस प्रकार इकाई का स्थान 2 तरीकों से, दहाई का स्थान 4 तरीकों से, सैकड़े का स्थान 3 तरीकों से और हजार का स्थान 2 तरीकों से भरा जा सकता है।
∴ 4 अंकीय सम संख्याओं की संख्या = 2 x 4 x 3 x 2 = 48.
प्रश्न 5.
8 व्यक्तियों की समिति में, हम कितने प्रकार से एक अध्यक्ष और एक उपाध्यक्ष चुन सकते हैं, यह मानते हुए कि एक व्यक्ति एक से अधिक पद पर नहीं रह सकता है?
हल:
8 व्यक्तियों में से एक को अध्यक्ष चुनने के तरीके = 8
अध्यक्ष चुनने के बाद 7 व्यक्तियों में से एक उपाध्यक्ष चुना जाना है।
उपाध्यक्ष चुनने के तरीके = 7
∴ एक अध्यक्ष और एक उपाध्यक्ष को 8 x 7 = 56 तरीकों से चुना जा सकता है।
प्रश्न 6.
यदि \(^{n-1} P_{3}:^{n} P_{4}\) = 1 : 9 तो n ज्ञात कीजिए।
हल:
हम जानते हैं कि
प्रश्न 7.
ज्ञात कीजिए यदि
(i) \(^{5} P_{r}=2^{6} P_{r-1}\)
(ii) \(^{5} P_{r}=^{6} P_{r-1}\)
हल:
r संख्या 5 से अधिक नहीं हो सकती
∴ r2 – 13r + 36 = 0 या (r – 9)(r – 4) = 0
∴ r = 9, 4
r ≠ 9 क्योंकि यह 5 से बड़ा है
अतः r = 4.
प्रश्न 8.
EQUATION शब्द के अक्षरों में से प्रत्येक को तथ्यतः केवल एक बार उपयोग करके कितने अर्थपूर्ण या अर्थहीन शब्द बन सकते हैं?
हल:
शब्द EQUATION में कुल 8 अक्षर हैं।
इन अक्षरों से बनने वाले शब्दों ( जो अर्थपूर्ण या अर्थहीन हैं) की संख्या = \(\frac{8 !}{(8-8) !}\) = 8!
= 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1
= 40320.
प्रश्न 9.
MONDAY शब्द के अक्षरों से कितने अर्थपूर्ण या अर्थहीन शब्द बन सकते हैं, यह मानते हुए कि किसी भी अक्षर की पुनरावृत्ति नहीं की जाती है,
(i) एक समय में 4 अक्षर लिए जाते हैं?
(ii) एक समय में सभी अक्षर लिए जाते हैं?
(iii) सभी अक्षरों का प्रयोग किया जाता है, किन्तु प्रथम अक्षर एक स्वर है?
हल:
(i) MONDAY शब्द में कुल 6 अक्षर हैं।
6 अक्षरों में से 4 अक्षर एक समय पर लेकर कुल शब्दों की संख्या
= \(^6 P_{4}\) = 6 x 5 x 4 x 3 = 360
जबकि शब्द अर्थपूर्ण या अर्थहीन हो सकते हैं।
(ii) सभी अक्षरों को एक साथ लेकर शब्दों की संख्या = 6! = 6 x 5 x 4 x 3 x 2 x 1 = 720.
(iii) पहले स्थान पर A या O रखना है। यह दो तरीकों से हो सकता है।
शेष 5 स्थान 5! = 120 तरीकों से भरे जा सकते हैं।
उन शब्दों की संख्या जो स्वर से प्रारम्भ होते हैं = 2 x 120 = 240.
प्रश्न 10.
MISSISSIPPI शब्द के अक्षरों से बने भिन्न-भिन्न क्रमचयों में से कितनों में चारों I एक साथ नहीं आते हैं?
हल:
शब्द MISSISSIPPI में कुल 11 अक्षर हैं जिसमें M, एक बार; I चार बार; S चार बार, तथा P दो बार प्रयुक्त हो रहे हैं।
इन अक्षरों से बने शब्दों की संख्या = \(\frac{11 !}{4 ! 4 ! 2}\)
मान लीजिए के 4 – I एक साथ हों, तब
कुल अक्षर = 8
इन अक्षरों से बनने वाले शब्दों की संख्या = \(\frac{8 !}{4 ! 2 !}\)
उन शब्दों का संख्या जब 4, I एक साथ नहीं है
प्रश्न 11.
PERMUTATIONS शब्द के अक्षरों को कितने तरीकों से व्यवस्थित किया जा सकता है, यदि
(i) चयनित शब्द का प्रारंभ P से तथा अंत S से होता है।
(ii) चयनित शब्द में सभी स्वर एक साथ हैं।
(iii) चयनित शब्द में P तथा S के मध्य सदैव 4 अक्षर हों?
हल:
PERMUTATIONS शब्द में कुल 12 अक्षर हैं जिनमें T – 2 है, शेष सब भिन्न हैं।
(i) P और S के स्थान स्थिर कर दिए गए हैं।
शेष अक्षरों से बने शब्दों की संख्या = \(\frac{10 !}{2 !}\)
= 1814400.
(ii) सभी स्वरों को एक साथ कर दिया गया है (EUAIO)PRMTTNS जिनमें 2T हैं।
उन शब्दों की संख्या जब स्वर एक साथ है
= \(\frac{8 !}{2 !} \times 5 !=\frac{40320 \times 120}{2}\)
= 2419200.
(iii) P तथा S के बीच चार अक्षर होने चाहिए।
मान लीजिए 12 अक्षरों के स्थानों का नाम 1, 2, 3….. 12 रख दिया है।
1 2 3 4 5 6 7 8 9 10 11 12
इस प्रकार P को स्थान 1, 2, 3, 4, 5, 6, 7 पर रखा जा सकता है तो S को स्थान 6, 7, 8, 9, 10, 11, 12 पर रखा जा सकता है।
⇒ P और S को 7 स्थानों पर रखा जा सकता है।
इसी प्रकार S और P को 7 स्थानों पर रखा जा सकता है।
P और S या S और P को 7 + 7 = 14 तरीकों से रखा जा सकता
शेष 10 अक्षरों को \(\frac{10 !}{2 !}\) तरीकों से व्यवस्थित किया जा सकता है।
∴ उन शब्दों की संख्या जब P और S के बीच में 4 अक्षर हों
= \(\frac{10 !}{2 !}\) x 14 = 10! x 7
= 25401600.