MP Board Class 11th Maths Solutions Chapter 7 क्रमचय और संचयं विविध प्रश्नावली
प्रश्न 1.
DAUGHTER शब्द के अक्षरों से, कितने अर्थपूर्ण या अर्थहीन शब्दों की रचना की जा सकती है, जबकि प्रत्येक शब्द में 2 स्वर तथा 3 व्यंजन हों?
हल:
DAUGHTER शब्द में 8 अक्षर हैं जिसमें 3 स्वर और 5 व्यंजन हैं
3 स्वर में से 2 स्वर चुनने के तरीके = \(^{3} C_{2}\) = 3
5 व्यंजनों में से 3 व्यंजन चुनने के तरीके = \(^{5} C_{3}\) = \(^{5} C_{2}\)
= \(\frac{5 \times 4}{1 \times 2}\) = 10
2 स्वर और 3 व्यंजन चुनने के तरीके = 3 x 10 = 30
प्रत्येक संचय में 5 अक्षर हैं।
उनके क्रमसंचयों की संख्या = 5! = 120
DAUGHTER शब्द के 2 स्वर और 3 व्यंजन लेकर शब्दों की संख्या = 30 x 120 = 3600.
प्रश्न 2.
EQUATION शब्द के अक्षरों से कितने, अर्थपूर्ण या अर्थहीन, शब्दों की रचना की जा सकती है, जबकि स्वर तथा व्यंजन एक साथ रहते हैं?
हल:
EQUATION शब्द में कुल 8 अक्षर हैं जिनमें 5 स्वर और 3 व्यंजन हैं।
स्वर अक्षरों का क्रमसंचय = 5! = 5 x 4 x 3 x 2 x 1 = 120
व्यंजन अक्षरों का क्रमसंचय = 3! = 3 x 2 x 1 = 6
स्वरों और अक्षरों, को 2 तरीकों से लिखा जा सकता है, पहले स्वर ले या व्यंजन लें। EQUATION शब्द के अक्षरों से बनने वाले शब्द जब स्वर तथा व्यंजन एक साथ आएँ
= 120 x 6 x 2 = 1440.
प्रश्न 3.
9 लड़के और 4 लड़कियों से 7 सदस्यों की एक समिति बनानी है, यह कितने प्रकार से किया सकता है, जबकि समिति में
(i) तथ्यतः 3 लड़कियाँ हैं?
(ii) न्यूनतम 3 लड़कियाँ हैं?
(iii) अधिकतम 3 लड़कियाँ हैं?
हल:
9 लड़के और 4 लड़कियों से 7 सदस्यों की एक समिति बनानी है।
(i) जब उस समिति में 3 लड़कियाँ हों तो उस समिति में 4 लड़के होंगे। 3 लड़कियाँ और 4 लड़के चुनने के तरीके
(ii) समिति में कम से कम 3 लड़कियाँ है तो समितियाँ निम्न प्रकार बनेंगी :
(a) 3 लड़कियाँ 4 लड़के
(b) 4 लड़कियाँ 3 लड़के
(iii) यदि समिति में अधिकतम 3 लड़कियाँ लेनी हैं तो समितियाँ निम्न प्रकार बनेगी :
(a) कोई लड़की नहीं और 7 लड़के
(b) 1 लड़की और 6 लड़के
(c) 2 लड़की और 5 लड़के
(d) 3 लड़की और 4 लड़के
= 36 + 336 + 126 x (6+ 4)
= 372 + 1260
= 1632.
प्रश्न 4.
यदि शब्द EXAMINATION के सभी अक्षरों से बने विभिन्न क्रमचयों को शब्द कोष की तरह सूचीबद्ध किया जाता है, तो E से प्रारम्भ होने वाले प्रथम शब्द से पूर्व कितने शब्द हैं?
हल:
A से प्रारंभ होने वाले शब्दों में 21, 2N और शेष भिन्न अक्षर हैं
ऐसे कुल शब्दों की संख्या = \(\frac{10 !}{2 ! 2 !}\)
= \(\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{4}\)
= 907200
शब्द कोष के अक्षरों की तरह दिए हुए अक्षरों को क्रमबद्ध करते हुए अगला अक्षर E होगा।
∴ E से पहले बने शब्दों की संख्या = 907200.
प्रश्न 5.
0, 1, 3, 5, 7 तथा 9 अंकों से, 10 से विभाजित होने वाली और बिना पुनरावृत्ति किए कितनी 6 अंकीय संख्याएँ बनाई जा सकती हैं? .
हल:
10 से विभाजित होने वाली वे संख्याएँ हैं जिनमें इकाई के स्थान पर 0 को रखा गया है।
अब हमें 6 अंकीय संख्याएँ बनाने के लिए शेष 5 स्थान और भरने हैं।
5 स्थानों को भरने का क्रमसंचय = 5! = 120
∴ 6 अंकीय संख्याएं जो 10 से विभाजित हो जाएँ उनकी संख्या = 120.
प्रश्न 6.
अंग्रेजी वर्णमाला में 5 स्वर तथा 21 व्यंजन हैं। इस वर्णमाला में 2 भिन्न स्वरों और 2 भिन्न व्यंजनों वाले कितने शब्दों की रचना की जा सकती है?
हल:
5 स्वरों में से 2 स्वर लेकर संचयों की संख्या = \(^{5} C_{2}\)
21 व्यंजनों में से 2 व्यंजन लेकर संचयों की संख्या = \(^{21} C_{2}\)
2 स्वरों और 2 व्यंजन को चयन करने के तरीके = \(^{5} C_{2} \times^{21} C_{2}\)
2 स्वरों और 2 व्यंजनों का क्रमसंचय = 4!
∴ 2 स्वर और 2 व्यंजन से बनने वाले शब्दों की संख्या = \(^{5} C_{2} \times^{21} C_{2}\) x 4!
= \(\frac{5 \times 4}{1 \times 2} \times \frac{21 \times 20}{1 \times 2}\) × 24
= 10 x 210 x 24
= 50400.
प्रश्न 7.
किसी परीक्षा के एक प्रश्न पत्र में प्रश्न है जो क्रमशः 5 तथा 7 प्रश्नों वाले दो खण्डों में विभक्त हैं अर्थात खंड I और खण्ड II. एक विद्यार्थी का प्रत्येक खंड से न्यूनतम उप्रश्नों का चयन करते हुए कुल 8 प्रश्नों को हल करना है। एक विद्यार्थी कितने प्रकार से प्रश्नों का चयन कर सकता है ?
हल:
एक विद्यार्थी को कुल 8 प्रश्न हल करने हैं।
प्रत्येक खण्ड से कम से कम 3 प्रश्न करने हैं।
भाग I और II से प्रश्नों को इस प्रकार चुनाव करने हैं।
भाग I से चुने जाने वाले प्रश्न 3 4 5 प्रश्नों की कुल संख्या 5
भाग II से चुने जाने वाले प्रश्न 5 4 3 प्रश्नों की कुल संख्या 7
प्रश्न 8.
52 पत्तों की एक गड्डी में से 5 पत्तों के संचय की संख्या निर्धारित कीजिए, यदि 5 पत्तों के प्रत्येक चयन (संचय) में तथ्यतः एक बादशाह है।
हल:
बादशाह वाले पत्तों की कुल संख्या = 4
इनमें से एक पत्ता चयन करने के तरीके = \(^{4} C_{1}\) = 4
अंब शेष 48 पत्तों में से 4 पत्ते चयन करने के तरीके = \(^{48} C_{4}\)
= \(\frac{48 \times 47 \times 46 \times 45}{1 \times 2 \times 3 \times 4}\)
= 194580
इस प्रकार 52 पत्तों में से 5 पत्ते लेकर (जिनमें से 1 बादशाह है) संचयों की संख्या
= \(^{4} C_{1} \times^{48} C_{4}\) = 4 x 194580 = 778320.
प्रश्न 9.
5 पुरुषों और 4 महिलाओं को एक पंक्ति में इस प्रकार बैठाया जाता है कि महिलाएँ सम स्थानों पर बैठती हैं। इस प्रकार कितने विन्यास संभव हैं ?
हल:
4 महिलाओं का 4 सम स्थानों पर बैठाने के विन्यास = 4! = 24
5 पुरुषों को 5 विषम स्थानों पर बैठाना के तरीके = 5! = 120
4 महिलाओं को सम स्थानों पर और 5 पुरुषों को विषम स्थानों पर बैठाने के विन्यास
= 4! x 5!
= 24 x 120
= 2880.
प्रश्न 10.
25 विद्यार्थियों की एक कक्षा से 10 का चयन एक भ्रमण दल के लिए किया जाता है। तीन विद्यार्थी ऐसे हैं, जिन्होंने यह निर्णय लिया है कि या तो वे तीनों दल में शामिल होंगे या उनमें से कोई भी दल में शामिल नहीं होगा। भ्रमण दल का चयन कितने प्रकार से किया जा सकता है?
हल:
25 विद्यार्थियों में से 10 विद्यार्थियों को भ्रमण दल में शामिल करना है। परन्तु 10 विद्यार्थियों में से 3 ऐसे हैं
(i) जब तीनों भ्रमण दल में शामिल होते हैं या
(ii) तीनों नहीं होते है।
(i) जब तीनों विद्यार्थी टीम में शामिल होते हैं तो भ्रमण दल का चयन करने के तरीके
= \(^{22} C_{7}\)
(ii) जब तीनों विद्यार्थी भ्रमण दल में शामिल नहीं होते हैं तो चयन करने के तरीके
= \(^{22} C_{10}\)
दोनो दशाओं में भ्रमण दल का चयन करने के तरीके = \(^{22} C_{7}\) + \(^{22} C_{10}\)
प्रश्न 11.
ASSASSINATION शब्द के अक्षरों के कितने विन्यास बनाए जा सकते हैं जबकि सभी एक साथ रहें?
हल:
ASSASSINATION में कुल 13 अक्षर हैं जिसमें A तीन बार, S चार बार, I दो बार तथा N दो बार प्रयुक्त हो रहे हैं।
4 – S को एक साथ रहना है। अतः उसे एक अक्षर मान लिया। इस प्रकार इसमें 10 अक्षर रह गए जिसमें 3 – A, 2 – 1 और 2 – N समान हैं।
∴ इस शब्द के अक्षरों का विन्यास जब S एक साथ रहते हो