In this article, we share MP Board Class 12th Maths Book Solutions Chapter 6 अवकलज के अनुप्रयोग Ex 6.1 Pdf, These solutions are solved by subject experts from the latest MP Board books.
MP Board Class 12th Maths Book Solutions Chapter 6 अवकलज के अनुप्रयोग Ex 6.1
प्रश्न 1.
वृत्त के क्षेत्रफल के परिवर्तन की दर इसकी त्रिज्या के सापेक्ष ज्ञात कीजिए जबकि
(a) r = 3cm है
(b) r = 4 cm है।
हल:
त्रिज्या वाले वृत्त का क्षेत्रफल A = πr2
प्रश्न 2.
एक घन का आयतन 8 cm3/s की दर से बढ़ रहा है। पृष्ठ क्षेत्रफल किस दर से बढ़ रहा है जबकि इसके किनारे की लम्बाई 12 cm है।
हल:
माना x लम्बाई के घन का आयतन V है।
तब V = x3
= \(\frac{8}{3}\)cm2/s
अत: घन का पृष्ठ क्षेत्रफल \(\frac{8}{3}\)cm2/s से बढ़ रहा है।
प्रश्न 3.
एक वृत्त की त्रिज्या समान रूप से 3 cm/s की दर से बढ़ रही है। ज्ञात कीजिए कि वृत्त का क्षेत्रफल किस दर से बढ़ रहा है जब त्रिज्या 10 cm है।
हल:
दिया है \(\frac{dr}{dt}\) = 3 cm/sec
वृत्त का क्षेत्रफल
A = πr2
प्रश्न 4.
एक परिवर्तनशील घन का किनारा 3 cm/s की दर से बढ़ रहा है। घन का आयतन किस दर से बढ़ रहा है जबकि किनारा 10 cm लंबा है?
हल:
माना घन के कोर की लम्बाई = x cm तब,
\(\frac{dx}{dt}\) = 3 cm/s (दिया है)
∴ घन का आयतन,
प्रश्न 5.
एक स्थिर झील में एक पत्थर डाला जाता है और तरंगें वृत्तों में 5 सेमी/सेकण्ड की गति से चलती हैं। जब वृत्ताकार तरंग की त्रिज्या 8 सेमी है, तो उस क्षण, घिरा हुआ क्षेत्रफल किस दर से बढ़ रहा है?
हल:
माना r त्रिज्या वाले वृत्ताकार तरंग का क्षेत्रफल A है
तब, \(\frac{dr}{dt}\) = 5 cm/s (दिया है)
तथा क्षेत्रफल,
A = πr2
प्रश्न 6.
एक वृत्त की त्रिज्या 0.7 cm/s की दर से बढ़ रही है। इसकी परिधि की वृद्धि की दर क्या है जब r = 4.9 cm है?
हल:
माना r त्रिज्या वाले वृत्त की परिधि c है
तथा दिया है
अतः परिधि 1.4 cm/s की दर से बढ़ रही है।
प्रश्न 7.
एक आयत की लम्बाई x, 5 cm/min की दर से घट रही है और चौड़ाई y, 4cm/min की दर से बढ़ रही है। जब x = 8 cm और y = 6 cm है। तब आयत के (a) परिमाप (b) क्षेत्रफल के परिवर्तन की दर ज्ञात कीजिए।
हल:
दिया है : \(\frac{dx}{dt}\) = -5cm/min तथा \(\frac{dy}{dt}\) = 4cm/min
माना आयत का क्षेत्रफल = A
परिमाप = p
लम्बाई = x cm, चौड़ाई = y cm
(a) p = 2(x + y)
\(\frac{d p}{d t}=2\left(\frac{d x}{d t}+\frac{d y}{d t}\right)\)
= 2[-5 + 4] = -2cm/min
अतः परिमाप 2 cm/min की दर से घट रहा है।
(b) A = xy
अतः क्षेत्रफल 2 cm2/min की दर से बढ़ रहा है।
प्रश्न 8.
एक गुब्बारा जो सदैव गोलाकार रहता है, एक पंप द्वारा 900 cm3 गैस प्रति सेकण्ड भर कर फुलाया जाता है। गुब्बारे की त्रिज्या के परिवर्तन की दर ज्ञात कीजिए जब त्रिज्या 15 cm है।
हल:
माना r त्रिज्या वाले गुब्बारे का आयतन V है
प्रश्न 9.
एक गुब्बारा जो सदैव लगातार गोलाकार रहता है कि त्रिज्या परिवर्तनशील है। त्रिज्या के सापेक्ष आयतन के परिवर्तन की दर ज्ञात कीजिए जब त्रिज्या 10 cm है।
हल:
माना गुब्बारे का आयतन = V
त्रिज्या = 2
प्रश्न 10.
एक 5 m लम्बी सीढ़ी दीवार के सहारे झुकी है। सीढ़ी का नीचे का सिरा, जमीन के अनुदिश दीवार से दूर 2 cm/s की दर से खींचा जाता है। दीवार पर इसकी ऊँचाई किस दर से घट रही है जबकि सीढ़ी के नीचे का सिरा दीवार से 4 cm दूर है?
हल:
माना सीढ़ी की लम्बाई AC = 5 m
BC = xm,
AB = y m,
∠ABC = 90°
समकोण ∆ABC में,
x2 + y2 = 52 = 25
t के सापेक्ष अवकलन करने पर,
प्रश्न 11.
एक कण वक्र 6y = x3 + 2 के अनुगत गति कर रहा है। वक्र पर उन बिन्दुओं को ज्ञात कीजिए जबकि x निर्देशांक की तुलना में निर्देशांक 8 गुना तीव्रता से बदल रहा है|
हल:
वक्र का समीकरण
6y = x2 + 2 …(i)
प्रश्न 12.
हवा के एक बुलबुले की त्रिज्या \(\frac{1}{2}\)cm/s की दर से बढ़ रही है। बुलबुले का आयतन किस दर से बढ़ रहा है जबकि त्रिज्या 1 cm है?
हल:
माना r त्रिज्या वाले बुलबुले का आयतन V है।
दिया है :
अतः बुलबुले का आयतन 2π cm3/s की दर से बढ़ रहा
प्रश्न 13.
एक गुब्बारा, जो सदैव गोलाकार रहता है, का परिवर्तनशील व्यास \(\frac{3}{2}\)(2x + 1) है। x के सापेक्ष आयतन के परिवर्तन की दर ज्ञात कीजिए।
हल:
माना गुब्बारे का आयतन = V
प्रश्न 14.
एक पाइप से रेत 12 cm3/s की दर से गिर रही है। गिरती रेत जमीन पर एक ऐसा शंक बनाती है जिसकी ऊँचाई सदैव आधर की त्रिज्या का छठा भाग है। रेत से बने शंकु की ऊँचाई किस दर से बढ़ रही है जबकि ऊँचाई 4 cm है।
हल:
माना बालू के शंकु का आयतन = V, ऊँचाई = h, त्रिज्या = r
प्रश्न 15.
एक वस्तु की x इकाइयों के उत्पादन से सम्बन्धित कुल लागत C(x)(रुपये में).
C(x) = 0.007x3 – 0.003x2 + 15x + 4000 से प्रदत्त है। सीमान्त लागत ज्ञात कीजिए जबकि 17 इकाइयों का उत्पादन किया गया है।
हल:
दिया है
C = 0.007x3 – 0.003x2 + 15x + 4000
∴ सीमान्त लागत
(mx) = \(\frac{d c}{d x}\) = 0.021x2 – 0.006x + 15
x = 17 रखने पर
mc = 0.021 × 289 – 0.006 x 17 + 15
= 6.069 – 0102 + 15
= 20.967
अतः सीमान्त लागत (mc) = 20.97 रुपये।
प्रश्न 16.
किसी उत्पाद की x इकाइयों के विक्रय से प्राप्त कुल आय R(x) रुपयों में
R(x) = 13x2 + 26x + 15 से प्रदत्त है। सीमांत आय ज्ञात कीजिए जब x = 7 है।
हल:
दिया है R(x) = 13x2 + 26x + 15.
∴ सीमान्त लागत (MR) = \(\frac{d R}{d x}\) = 26x + 26
x = 7 पर,
MR = 26 × 7 + 26
= 208
अतः सीमान्त लागत 3208 रुपये।
प्रश्न 17 तथा 18 में सही उत्तर का चयन कीजिए।
प्रश्न 17.
एक वृत्त की त्रिज्याr r = 6 cm पर के सापेक्ष क्षेत्रफल में परिवर्तन की दर है :
(A) 10 π
(B) 12 π
(C) 8 π
(D) 11 π
हल:
माना वृत का क्षेत्रफल = A, त्रिज्या = r
∴ A = πr2
r के सापेक्ष अवकलन करने पर,
\(\frac{d A}{d r}\) = 2πr
परन्तु r = 6 रखने पर,
∴ 2π × 6 = 12πcm2/cm
अतः विकल्प (B) सही है।
प्रश्न 18.
एक उत्पाद की इकाइयों के विक्रय से प्राप्त कुल आय रुपयों में R(x) = 3x2 + 36x + 5 से प्रदत्त है। जब x = 15 है तो सीमान्त आय है :
(A) 116
(B) 96
(C) 90
(D) 126
हल:
राजस्व समीकरण है
R(x) = 3x2 + 36x + 5
MR = \(\frac{d}{d x}\) R(x) = \(\frac{d}{d x}\) (3x2 + 36x + 6)
= 6x + 36 = 6(x + 6)
x = 15, ∴ MR = 6 × 21 = 126 रु०
अत: विकल्प (D) सही है।