MP Board Class 6th Maths Solutions Chapter 11 बीजगणित Ex 11.2

MP Board Class 6th Maths Solutions Chapter 11 बीजगणित Ex 11.2

पाठ्य-पुस्तक पृष्ठ संख्या # 250-251

प्रश्न 1.
एक समबाहु त्रिभुज की भुजा को l से दर्शाया गया है। इस समबाहु त्रिभुज के परिमाप को l का प्रयोग करते हुए व्यक्त कीजिए।
हल :
∵समबाहु त्रिभुज की भुजा = l
∴इसका परिमाप = l + l + l = 3l

प्रश्न 2.
एक समषड्भुज (Regular hexagon) की एक भुजा को l से व्यक्त किया गया है (पाठ्य-पुस्तक में दी गई आकृति।) l का प्रयोग करते हुए इस षड्भुज के परिमाप को व्यक्त कीजिए। (संकेत : एक समषड्भुज की सभी 6 भुजाएँ बराबर होती हैं और सभी कोण बराबर होते हैं।)
हल :
∵ समषड्भुज की सभी भुजाएँ बराबर हैं।
और समषड्भुज की प्रत्येक भुजा = l
∴ इसका परिमाप = l + l + l + l + l + l
= 61

प्रश्न 3.
घन (cube) एक त्रिविमीय (three dimensional) आकृति होती है जैसा कि पाठ्य-पुस्तक में दी गई आकृति में दिखाया गया है। इसके 6 फलक होते हैं और ये सभी सर्वसम (identical) वर्ग होते हैं। घन के एक किनारे की लम्बाई l से दी जाती है। घन के किनारों की कुल लम्बाई के लिए एक सूत्र ज्ञात कीजिए।
हल :
घन के 6 सर्वसम फलक हैं। घन के 12 किनारे हैं।
प्रत्येक किनारे की लम्बाई l समान है।
∴ घन के किनारों की कुल लम्बाई = 12 x l
= 12l

MP Board Solutions

प्रश्न 4.
वृत्त का एक व्यास वह रेखाखण्ड है जो वृत्त पर स्थित दो बिन्दुओं को जोड़ता है और उसके केन्द्र से होकर जाता है। पाठ्य-पुस्तक में दी गई आकृति में AB वृत्त का व्यास है और C उसका केन्द्र है। वृत्त के व्यास (d) को उसकी त्रिज्या (r) के पदों में व्यक्त कीजिए।
हल :
वृत्त की त्रिज्या = r तथा व्यास = d
चूँकि वृत्त का व्यास त्रिज्या का दो गुना होता है।
∴व्यास = 2 x त्रिज्या
या d = 2 x r या d = 2r

प्रश्न 5.
तीन संख्याओं 14, 27 और 13 के योग पर विचार कीजिए। हम यह योग दो प्रकार से ज्ञात कर सकते हैं:
(a) हम पहले 14 और 27 को जोड़कर 41 प्राप्त कर सकते हैं और फिर 41 में 13 जोड़कर 54 प्राप्त कर सकते हैं। या
(b) हम पहले 27 और 13 को जोड़कर 40 प्राप्त कर सकते हैं और फिर उसे 14 में जोड़कर कुल योग 54 प्राप्त कर सकते हैं। इस प्रकार, (14 + 27) + 13 = 14 + (27 + 13) हुआ।
ऐसा किन्हीं भी तीन संख्याओं के लिए किया जा सकता है। यह गुण संख्याओं के योग का साहचर्य (associative) गुण कहलाता है। इस गुण को जिसे हम पूर्ण संख्याओं के अध्याय में पढ़ चुके हैं, चर a, b और c का प्रयोग करते हुए, एक व्यापक रूप में व्यक्त कीजिए।
हल :
माना कि तीन संख्याएँ a, b और c हैं।
∴योग के साहचर्य नियम के अनुसार, हम a, b और c को । निरूपित कर सकते हैं
(a + b) + c = a + (b + c)

MP Board Class 6th Maths Solutions

Leave a Comment