MP Board Class 6th Maths Solutions Chapter 12 अनुपात और समानुपात Ex 12.1
पाठ्य-पुस्तक पृष्ठ संख्या # 271-272
प्रश्न 1.
एक कक्षा में 20 लड़कियाँ और 15 लड़के हैं। अनुपात ज्ञात कीजिए :
(a) लड़कियों की संख्या का लड़कों की संख्या से
(b) लड़कियों की संख्या का कुल विद्यार्थियों की संख्या से।
हल :
लड़कियों की संख्या = 20,
लड़कों की संख्या = 15
∴ कुल विद्यार्थियों की संख्या = 20 + 15 = 35
(a)∴अभीष्ट अनुपात
(b) अभीष्ट अनुपात
प्रश्न 2.
30 विद्यार्थियों की कक्षा में 6 फुटबॉल, 12 क्रिकेट और बाकी टेनिस पसंद करते हैं। अनुपात ज्ञात कीजिए :
(a) फुटबॉल पसंद करने वालों की संख्या का टेनिस पसंद करने वालों की संख्या से
(b) क्रिकेट प्रेमियों का कुल विद्यार्थियों की संख्या से।
हल :
कक्षा में कुल विद्यार्थियों की संख्या = 30
फुटबॉल पसंद करने वाले विद्यार्थियों की संख्या = 6
क्रिकेट पसंद करने वाले विद्यार्थियों की संख्या = 12
∴टेनिस पसंद करने वाले विद्यार्थी = 30 – (6 + 12)
= 30 – 18
= 12
(a) अभीष्ट अनुपात
(b) अभाष्ट अनुपात
प्रश्न 3.
पाठ्य-पुस्तक में दी गई आकृति को देखकर अनुपात निकालिए:
(a) आयत के अन्दर के सभी त्रिभुजों की संख्या का वृत्तों की संख्या से।
(b) आयत के अन्दर के सभी वर्गों की संख्या का सभी आकृतियों से।
(c) आयत के अन्दर के सभी वृत्तों का सभी आकृतियों से।
हल :
(a) आयत में त्रिभुजों की संख्या = 3,
वृत्तों की संख्या = 2
∴अभीष्ट अनुपात
(b) वर्गों की संख्या = 2,
सभी आकृतियों की संख्या = 7
∴अभीष्ट अनुपात
(c) वृत्तों की संख्या = 2,
सभी आकृतियों की संख्या = 7
∴अभीष्ट अनुपात
प्रश्न 4.
हामिद और अख्तर ने एक घण्टे में क्रमश: 9 किमी और 12 किमी की दूरी तय की। हामिद और अख्तर की चालों का अनुपात ज्ञात कीजिए।
हल :
हामिद की चाल = 9 किमी/घण्टा
अख्तर की चाल = 12 किमी/घण्टा
∴अभीष्ट अनपात
प्रश्न 5.
रिक्त स्थानों को भरिए
(क्या ये तुल्य अनुपात हैं?)
हल :
हाँ, ये तुल्य अनुपात हैं।
प्रश्न 6.
निम्न में से प्रत्येक का अनुपात ज्ञात कीजिए :
(a) 81 का 108 से
(b) 98 का 63 से
(c) 33 किमी का 121 किमी से
(d) 30 मिनट का 45 मिनट से।
हल :
(a) अनुपात = \(\frac{81}{108}=\frac{3}{4}\) या 3 : 4
(b) अनुपात = \(\frac{98}{63}=\frac{14}{9}\) या 14 : 9
(c) अनुपात = \(\frac{33}{121}=\frac{3}{11}\) या 3 : 11
(d) अनुपात = \(\frac{30}{45}=\frac{2}{3}\) या 2 : 3
प्रश्न 7.
निम्न में से प्रत्येक का अनुपात ज्ञात कीजिए :
(a) 30 मिनट का 1.5 घण्टे
(b) 40 सेमी का 1.5 मी.
(c) 55 पैसे का Rs 1
(d) 500 मिली का 2 लीटर।
हल :
(a) अनुपात
(b) अनुपात
(c) अनुपात
(d) अनुपात
प्रश्न 8.
एक वर्ष में सीमा Rs 1,50,000 कमाती है और Rs 50,000 की बचत करती है। प्रत्येक का अनुपात ज्ञात कीजिए।
(a) सीमा की आय और उसकी बचत का।
(b) सीमा द्वारा की गई बचत और उसके द्वारा किए गये व्यय का।
हल :
सीमा की आय = Rs 1,50,000
सीमा द्वारा बचत = Rs 50,000
सीमा द्वारा व्यय = Rs 1,50,000 – Rs 50,000
= Rs 1,00,000
(a) अभीष्ट अनुपात
(b) अभीष्ट अनुपात
प्रश्न 9.
एक विद्यालय में 3,300 विद्यार्थी और 102 शिक्षक हैं। शिक्षकों की संख्या का विद्यार्थियों की संख्या से अनुपात ज्ञात कीजिए।
हल :
शिक्षकों की संख्या = 102
विद्यार्थियों की संख्या = 3300
अभीष्ट अनुपात
प्रश्न 10.
एक कॉलेज में 4320 विद्यार्थियों में से 2300 लड़कियाँ हैं। अनुपात निकालिए :
(a) लड़कियों की संख्या और कुल विद्यार्थियों की संख्या का
(b) लड़कों की संख्या और लड़कियों की संख्या का
(c) लड़कों की संख्या और कुल विद्यार्थी की संख्या का।
हल :
कुल विद्यार्थियों की संख्या = 4320
लड़कियों की संख्या = 2300
∴ लड़कों की संख्या = 4320 – 2300 = 2020
(a)∴ अभीष्ट अनुपात
(b)∴ अभीष्ट अनुपात
(c)∴ अभीष्ट अनुपात
या 101 : 216
प्रश्न 11.
एक विद्यालय के 1800 विद्यार्थियों में से 750 ने बास्केट बॉल, 800 ने क्रिकेट और शेष ने टेबल टेनिस खेलना पसन्द किया है। यदि एक छात्र केवल एक खेल चुने तो अनुपात ज्ञात कीजिए :
(a) बास्केट बॉल खेलने वालों और टेबल टेनिस खेलने वालों का।
(b) क्रिकेट खेलने वालों और बास्केट बॉल खेलने वालों का।
(c) बास्केट बॉल खेलने वालों और कुल विद्यार्थियों का।
हल:
कुल विद्यार्थी = 1800
बास्केट बॉल खेलने वाले विद्यार्थी = 750
क्रिकेट खेलने वाले विद्यार्थी = 800
टेबल टेनिस खेलने वाले विद्यार्थी = 1800 – (750 + 800)
= 250
(a)∴ अभीष्ट अनुपात
(b)∴अभीष्ट अनुपात
(c)∴अभीष्ट अनपात
प्रश्न 12.
एक दर्जन पेन का मूल्य Rs 180 है और 8 बॉल पेन का मूल्य Rs 56 है। पेन के मूल्य का बॉल पेन के मूल्य से अनुपात ज्ञात कीजिए।
हल :
∵12 पेन का मूल्य = Rs 180
∴1 पेन का मूल्य = Rs \(\frac { 180 }{ 12 }\) = Rs 15
∵8 बॉल पेन का मूल्य = Rs 56
∴1 बॉल पेन का मूल्य = \(\frac { 56 }{ 8 }\) = Rs 7
∴अभीष्ट अनपात
प्रश्न 13.
कथन को देखें : एक हॉल की चौड़ाई और लम्बाई का अनुपात 2 : 5 है। निम्न सारणी को पूरा कीजिए जो कि हॉल की कुछ सम्भव चौड़ाई व लम्बाई दिखाती है:
हल :
प्रश्न 14.
शीला और संगीता के बीच 20 पेनों को 3 : 2 में बाँटिए।
हल :
अनुपाती योग = 3 + 2 = 5
कुल पेन = 20
शीला का भाग = \(\frac { 3 }{ 5 }\) x 20 = 12 पेन
संगीता का भाग = \(\frac { 2 }{ 5 }\) x 20 = 8 पेन
प्रश्न 15.
एक माता अपनी बेटी श्रेया और भूमिका में Rs 36 को उनकी आयु के अनुपात में बाँटना चाहती है। यदि श्रेया की आयु 15 वर्ष और भूमिका की आयु 12 वर्ष हो, तो श्रेया और भूमिका को कितना-कितना मिलेगा ?
हल :
श्रेया की आयु : भूमिका की आयु
= 15 : 12
= 5 : 4
∵माता Rs 36 को श्रेया और भूमिका को उनकी आयु के अनुपात में बाँटना चाहती है।
∴Rs 36 को 5 : 4 में बाँटना है।
अतः अनुपाती योग = 5 + 4 = 9
∴श्रेया का भाग = \(\frac { 5 }{ 9 }\) x Rs 36 = Rs 20
और भूमिका का भाग = \(\frac { 4 }{ 9 }\) x Rs 36 = Rs 16
प्रश्न 16.
पिता की वर्तमान आयु 42 वर्ष और उसके पुत्र की आयु 14 वर्ष है। अनुपात ज्ञात कीजिए :
(a) पिता की वर्तमान आयु का पुत्र की वर्तमान आयु से।
(b) पिता की आयु का पुत्र की आयु से, जब पुत्र 12 वर्ष का था।
(c) 10 वर्ष बाद भी पिता की आयु का 10 वर्ष बाद की पुत्र की आयु से
(d) पिता की आयु का पुत्र की आयु से जब पिता 30 वर्ष का था।
हल :
(a) पिता की वर्तमान आयु = 42 वर्ष,
पुत्र की वर्तमान आयु = 14 वर्ष
∴अभीष्ट अनुपात
(b) 2 वर्ष पूर्व पुत्र 12 वर्ष का था
2 वर्ष पूर्व पिता की आयु = 42 वर्ष – 2 वर्ष = 40 वर्ष
∴अभीष्ट अनुपात
(c) 10 वर्ष बाद पिता की आयु = 42 वर्ष + 10 वर्ष = 52 वर्ष 10 वर्ष बाद पुत्र की आयु = 14 वर्ष + 10 वर्ष = 24 वर्ष
∴अभीष्ट अनुपात
(d)∴ 42 वर्ष – 30 वर्ष = 12 वर्ष
12 वर्ष पूर्व पिता की आयु = 30 वर्ष
और 12 वर्ष पूर्व पुत्र की आयु = 14 वर्ष – 12 वर्ष
= 2 वर्ष
∴अभीष्ट अनुपात
पाठ्य-पुस्तक पृष्ठ संख्या # 275
प्रयास कीजिए
प्रश्न 1.
जाँच कीजिए कि दिए गए अनुपात समान हैं अर्थात् वे समानुपात में हैं। यदि हाँ, तो उन्हें सही ढंग से लिखिए।
1. 1 : 5 और 3 : 15
2. 2 : 9 और 18 : 81
3. 15 : 45 और 5 : 25
4. 4 : 12 और 9 : 27
5. Rs 10 का Rs 15 और 4 का 6 से।
हल :
1. 1 : 5 = \(\frac { 1 }{ 5 }\)
और 3 : 15 = \(\frac{3}{15}=\frac{1}{5}\)
∴1 : 5 और 3 : 15 समानुपात में हैं।
अतः सही रूप है-1 : 5 :: 3 : 15
2. 2 : 9 = \(\frac { 2 }{ 9 }\)
और 18 : 81 = \(\frac{18}{81}=\frac{2}{9}\)
∴2 : 9 और 18 : 81 समानुपात में हैं।
अतः सही रूप है-2 : 9 : : 18 : 81
3. 15 : 45 = \(\frac{15}{45}=\frac{1}{3}\)
और 5 : 25 = \(\frac{5}{25}=\frac{1}{5}\)
\(\frac{1}{3} \neq \frac{1}{5}\)
∴15 : 45 और 5 : 25 समानुपात में नहीं हैं।
4. 4 : 12 = \(\frac{4}{12}=\frac{1}{3}\)
और 9 : 27 = \(\frac{9}{27}=\frac{1}{3}\)
∴4 : 12 और 9 : 27 समानुपात में हैं।
अतः सही रूप है-4 : 12 : : 9 : 27
5. Rs 10 : Rs 15 = \(\frac{10}{15}=\frac{2}{3}\)
और 4 : 6 = \(\frac{4}{6}=\frac{2}{3}\)
∴Rs 10 : Rs 15 = 4 : 6
या Rs 10 ; Rs 15, 4 और 6 समानुपात में हैं।
अतः सही रूप है- Rs 10 : Rs 15 :: 4 : 6