MP Board Class 9th Maths Solutions Chapter 1 संख्या पद्धति Additional Questions
MP Board Class 9th Maths Chapter 1 अतिरिक्त परीक्षोपयोगी प्रश्न
MP Board Class 9th Maths Chapter 1 दीर्घ उत्तरीय प्रश्न
प्रश्न 1.
0.6 + \(0.\overline { 7 }\) + \(0.4\overline { 7 }\) को p/q के रूप में व्यक्त कीजिए; जहाँ p और q पूर्णांक हैं तथा q ≠ 0 है।
हल:
0.6 = \(\frac { 6 }{ 10 }\) = \(\frac { 3 }{ 5 }\)
मान लीजिए x = \(0.\overline { 7 }\) = 0.777 ….
⇒ 10x = 7.777…. = 7 + 0.777 = 7 + x.
⇒ 9x = 7 ⇒ x = \(\frac { 7 }{ 9 }\)
मान लीजिए y = \(0.4\overline { 7 }\) = 0.4777….
⇒ 10y = 4.7777….. = 4.3 + 0.4777…… = 4.3 + y
अतः दी हुई राशि का अभीष्ट p/q रूप = \(\frac { 167 }{ 90 }\) .
प्रश्न 2.
सरल कीजिए:
हल:
अतः दिए हुए अपरिमेय व्यंजक का अभीष्ट सरल मान = 1.
प्रश्न 3.
यदि √2 = 1.414, √ 3= 1.732 हो, तो का मान ज्ञात कीजिए।
हल:
अतः दिए हुए अपरिमेय व्यंजक का अभीष्ट मान = 2.063.
प्रश्न 4.
सरल कीजिए : \( (256)^{-\left(4^{-3 / 2}\right)}\)
हल:
अतः अभीष्ट सरल मान = 1/2.
प्रश्न 5.
का मान ज्ञात कीजिए।
हल:
= 4(216)2/3 + (256)3/4 + 2(243)1/5
= 4(63)2/3+ (28)3/4 + 2(35)1/5
= 4 x 62 + 26 + 2 x 3
= 4 x 36 + 64 + 6
= 144 + 64 + 6 = 214
अत: अभीष्ट मान = 214.
MP Board Class 9th Maths Chapter 1 लघु उत्तरीय प्रश्न
प्रश्न 1.
ज्ञात कीजिए कि कौन-से चर x, y, z और u परिमेय संख्याएँ निरूपित करते हैं तथा कौन-से चर अपरिमेय संख्याएँ निरूपित करते हैं :
(i) x2 = 5
(ii) y2 = 9
(iii) z2 = 0.04
(iv) u2 = \(\frac { 17 }{ 4 }\).
हल:
(i) x2 = 5 ⇒ x = √5 अपरिमेय संख्या
(ii) y2 = 9 = y = √9 = 3 परिमेय संख्या
(iii) z2 = 0.04 ⇒ y2 = (0.2)2 = y = 0.2 परिमेय संख्या
(iv) u2 = \(\frac { 17 }{ 4 }\) ⇒ u = \(\sqrt [ 17 ]{ 4 }\) = \(\sqrt [ 17 ]{ 2 }\)
अतः y एवं z परिमेय संख्याएँ हैं तथा x एवं u अपरिमेय संख्याएँ हैं।
प्रश्न 2.
निम्नलिखित के बीच तीन परिमेय संख्याएँ ज्ञात कीजिए :
(i) -1 और -2
(ii) 0.1 और 0.11
(iii) \(\frac { 5 }{ 7 }\) और \(\frac { 6 }{ 7 }\)
(iv) \(\frac { 1 }{ 4 }\) और \(\frac { 1 }{ 5 }\).
हल:
(i) – 1 और – 2 को \(\frac { 4 }{ 4 }\) से गुणा करके लिखने पर,
अतः अभीष्ट परिमेय संख्याएँ हैं : – 5/4, – 6/4 एवं – 7/4.
(ii) 0.1 और 0.11 को = से गुणा करके लिखने पर,
अत: अभीष्ट परिमेय संख्याएँ हैं : \(\frac { 0.41 }{ 4 }\), \(\frac { 0.42 }{ 4 }\) एवं \(\frac { 0.43 }{ 4 }\).
(iii) \(\frac { 5 }{ 7 }\) और \(\frac { 6 }{ 7 }\) को \(\frac { 4 }{ 4 }\) से गुणा करके लिखने पर,
अत: अभीष्ट परिमेय संख्याएँ हैं : \(\frac { 21 }{ 28 }\),\(\frac { 22 }{ 28 }\) एवं \(\frac { 23 }{ 28 }\).
(iv) \(\frac { 1 }{ 4 }\) और \(\frac { 1 }{ 5 }\) को \(\frac { 4 }{ 4 }\) से गुणा करके लिखने पर,
अत: अभीष्ट परिमेय संख्याएँ हैं : \(\frac { 4 }{ 17 }\), \(\frac { 4 }{ 18 }\) एवं \(\frac { 4 }{ 19 }\)
प्रश्न 3.
\(\frac { 5 }{ 7 }\) और \(\frac { 6 }{ 7 }\) के बीच दो परिमेय संख्याएँ लिखिए। (2019)
हल:
\(\frac { 16 }{ 21 }\) एवं \(\frac { 17 }{ 21 }\)
प्रश्न 4.
निम्नलिखित के बीच एक परिमेय संख्या और एक अपरिमेय संख्या प्रविष्ट कीजिए :
(i) 2 और 3
(ii) 0 और 0.1
(iii) \(\frac { 1 }{ 3 }\) और \(\frac { 1 }{ 2 }\)
(iv) \(\frac { -2 }{ 5 }\) और \(\frac { 1 }{ 2 }\)
(v) 0.15 और 0.16
(vi) √2 और √3
(vii) 2.357 और 3.121
(viii) 0.0001 और 0.001
(ix) 3.623623 और 0.484848
(x) 6.375289 और 6.375738.
उत्तर:
(i) 2 और 3 के बीच परिमेय संख्या = 2.5 एवं अपरिमेय संख्या = √6
(ii) 0 और 0.1 के बीच परिमेय संख्या = 0.05 एवं अपरिमेय संख्या = 0.010010001…
(iii) \(\frac { 1 }{ 3 }\) और \(\frac { 1 }{ 2 }\) के बीच परिमेय संख्या = \(\frac { 2 }{ 5 }\) = एवं अपरिमेय संख्या = \(\frac { 1 }{ \sqrt { 5 } }\)
(iv) –\(\frac { 2 }{ 5 }\) और \(\frac { 1 }{ 2 }\) के बीच परिमेय संख्या = \(\frac { 1 }{ 4 }\) = एवं अपरिमेय संख्या = \(\frac { 1 }{ \sqrt { 5 } }\)
(v) 0.15 और 0.16 के बीच परिमेय संख्या = 0.155 एवं अपरिमेय संख्या = 0.15050050005 ….
(vi) √2 एवं √3 के बीच परिमेय संख्या = 1.5 एवं अपरिमेय संख्या = 1.505005000…..
(vii) 2.357 एवं 3.121 के बीच परिमेय संख्या = 2.5 एवं अपरिमेय संख्या = 3.010010001….
(viii) 0.0001 और 0:001 के बीच परिमेय संख्या = 0.0005 एवं अपरिमेय संख्या = 0.0083030030003……..
(ix) 3.623623 और 0.484848 के बीच परिमेय संख्या = 2 एवं अपरिमेय संख्या = 2.01001000100001……..
(x) 6.375289 और 6.375738 के बीच परिमेय संख्या = 6.3755 एवं अपरिमेय संख्या = 6.37530300300030000 …
प्रश्न 5.
संख्या रेखा पर (i) √5, (ii) √10 , (iii) √13 और (iv) √17 को निरूपित कीजिए।
हल:
(i) संख्या रेखा पर √5 का निरूपण :
(ii) संख्या रेखा पर √10 का निरूपण :
(iii) संख्या रेखा पर √13 का निरूपण :
(iv) संख्या रेखा पर √17 का निरूपण :
अतः अभीष्ट मान संख्या रेखा पर बिन्दु C से निरूपित हैं।
प्रश्न 6.
संख्या रेखा पर निम्नलिखित संख्याओं को ज्यामितीय रूप से निरूपित कीजिए :
(i) \(\sqrt { 4.5 }\)
(ii) \(\sqrt { 5.6 }\)
(iii) \(\sqrt { 8.1 }\)
(iv) \(\sqrt { 2.3 }\)
हल:
(i) \(\sqrt { 4.5 }\) का संख्या रेखा पर ज्यामितीय निरूपण :
अत: संख्या रेखा पर अभीष्ट बिन्दु E = \(\sqrt { 4.5 }\) निरूपित हैं।
(ii) \(\sqrt { 5.6 }\) का संख्या रेखा पर ज्यामितीय निरूपण :
चित्र 1.10 अतः संख्या रेखा पर अभीष्ट बिन्दु E = \(\sqrt { 5.6 }\) निरूपित है।
(iii) \(\sqrt { 8.1 }\) का संख्या रेखा पर ज्यामितीय निरूपण :
अतः संख्या रेखा पर अभीष्ट बिन्दु E = \(\sqrt { 8.1 }\) निरूपित है।
(iv) \(\sqrt { 2.3 }\) का संख्या रेखा पर ज्यामितीय निरूपण करना :
अतः संख्या रेखा पर अभीष्ट बिन्दु E = \(\sqrt { 2.3 }\) निरूपित है।
प्रश्न 7.
निम्नलिखित को p/q के रूप में व्यक्त कीजिए; जहाँ p और q पूर्णांक हैं तथा q ≠ 0 है :
(i) 0.2
(ii) \(0.\overline { 8 }\) अथवा 0.888…. (2019)
(iii) \(5.\overline { 2 }\),
(iv) \(0.\overline { 001 }\),
(v) 0.2555….
(vi) \(0.1\overline { 34 }\)
(vii) 0.00323232 ….
(viii) 0-404040 ….
(ix) \(0.12\overline { 3 }\).
हल:
(i) 0.2 = \(\frac { 2 }{ 10 }\) = \(\frac { 1 }{ 5 }\) .
(ii) 0.888 …. = x (मान लीजिए)
⇒ 10x = 8.888…..= 8 + 0.888….. = 8 + x.
⇒ 9x = 8 ⇒ x = \(\frac { 8 }{ 9 }\)
(iii) \(5.\overline { 2 }\) = 5.222….. = x (मान लीजिए)
⇒ 10x = 52.222…. = = 47 + 5.222 . . . . = 47 + x
⇒ 9x = 47 ⇒ x = \(\frac { 47 }{ 9 }\).
(iv) 0.001 = 0.001001001 …. =x (मान लीजिए)
⇒ 1000x = 1:001001001…. = 1+ 0.001001001 = 1 + x
⇒ 999x = 1 ⇒ x = \(\frac { 1 }{ 999 }\)
(v) 0.2555 …. = x (मान लीजिए)
⇒ 10x = 2.555 ….. = 2.3 + 0.2555 …. = 2.3 +x
⇒ 9x = 2.3 ⇒ n = 2.3 = \(\frac { 23 }{ 90 }\).
(vi) \(0.1\overline { 34 }\) = 0.1343434 …. =x (मान लीजिए)।
⇒ 100x = 13.434343…. = 13.3 + 0.1343434…. = 13:3 + x
⇒ 99x = 13.3 ⇒ x = \(\frac { 13.3 }{ 99 }\) = \(\frac { 133 }{ 990 }\).
(vii) 0.00323232 …. = x (मान लीजिए)
⇒ 100x = 0. 323232 .. . = 0.32 + 0.003232 …. = 0.32 + x
⇒ 99x = 032 ⇒ x = \(\frac { 0.32 }{ 99 }\) = \(\frac { 32 }{ 9900 }\) = \(\frac { 8 }{ 2475 }\)
(viii) 0.404040….. = x (मान लीजिए)
⇒ 100x = 40.404040….40 + 0.404040 …. = 40 +x
⇒ 99x = 40 ⇒ x = \(\frac { 40 }{ 99 }\)
(ix) \(0.12\overline { 3 }\) = 0.12333 …. = x (मान लीजिए)
⇒ 10x = 1.2333…. = 1.11 + 0.12333 . . . . = 1.11 + x
⇒ 9x = 1.11 ⇒ x = \(\frac { 1.11 }{ 9 }\) = \(\frac { 111 }{ 900 }\).
प्रश्न 8.
दर्शाइए कि 0.142857142857….= \(\frac { 1 }{ 7 }\) है।
हल:
मान लीजिए x = 0.142857142857 ….
⇒ 1000000x = 142857.142857142857…..
= 142857 + 0.142857142857 . . . . .
= 142857 + x
⇒ 999999x = 142857
⇒ x = \(\frac { 142857 }{ 999999 }\) = \(\frac { 1 }{ 7 }\)
⇒ 0.142857142857 ….. = \(\frac { 1 }{ 7 }\)
प्रश्न 9.
निम्नलिखित को सरल कीजिए :
(i) \(\sqrt { 45 }\) – 3\(\sqrt { 20 }\) + 4√5
(ii) \(\frac{\sqrt{24}}{8}+\frac{\sqrt{54}}{9}\)
(ii) 4√12 x 7√6
(iv) 4√28 ÷ 3√7.
हल:
(i) \(\sqrt { 45 }\) – 3\(\sqrt { 20 }\) + 4√5 = 3√5 – 6√5 + 4√5
= 7√5 – 6√5 = 5
(iii) 4√12 x 7√6 = 28√72 = 28 x 6√2 = 168√2.
(iv) 4√28 – 3√7 = 8√7 + 3√7 = 8√3.
प्रश्न 10.
यदि a = 2 + √3 है, तो a – \(\frac { 1 }{a }\) का मान ज्ञात कीजिए।
हल:
अत: a – \(\frac { 1 }{a }\) का अभीष्ट मान = 2√3.
प्रश्न 11.
निम्नलिखित में से प्रत्येक में हर का परिमेयीकरण कीजिए और फिर √2 = 1:414, √3 = 1.732 और √5 = 2:236 लेते हुए, तीन दशमलव अंक तक प्रत्येक का मान ज्ञात कीजिए:
हल:
MP Board Class 9th Maths Chapter 1 अति लघु उत्तरीय प्रश्न
प्रश्न 1.
मान लीजिए कि x और y क्रमशः परिमेय और अपरिमेय संख्याएँ हैं। क्या x + y आवश्यक रूप से एक अपरिमेय संख्या है ? अपने उत्तर की पुष्टि के लिए एक उदाहरण दीजिए।
उत्तर:
हाँ।
उदाहरण: मान लीजिए x = 2 एवं y = √2
x + y = 2 + 1.41421356237…….. = 3.41421356237
जो असांत एवं अनावर्ती है अत: x + y एक अपरिमेय संख्या है।
प्रश्न 2.
मान लीजिए x एक परिमेय संख्या है और । एक अपरिमेय संख्या है। क्या xy आवश्यक रूप से एक अपरिमेय संख्या है ? एक उदाहरण द्वारा अपने उत्तर का औचित्य दीजिए।
उत्तर:
नहीं।
उदाहरण : मान लीजिए x = 0 एवं y = √2 तब x.y = 0 x √2 = 0 एक परिमेय संख्या है
अत: यह आवश्यक नहीं कि xy एक अपरिमेय संख्या ही हो।
प्रश्न 3.
बताइए निम्नलिखित कथन सत्य हैं या असत्य। अपने उत्तर का औचित्य दीजिए :
(i) √2√3 एक परिमेय संख्या है।
(ii) किन्हीं दो पूर्णांकों के बीच अपरिमित रूप से अनेक पूर्णांक हैं।
(iii) 15 और 18 के बीच में परिमेय संख्याओं की संख्या परिमित है।
(iv) कुछ संख्याएँ ऐसी हैं जिन्हें p/q, q ≠ 0 के रूप में नहीं लिखा जा सकता; जहाँ p और q दोनों पूर्णांक हैं।
(v) एक अपरिमेय संख्या का वर्ग सदैव एक परिमेय संख्या होती है।
(vi) [/latex]\frac{\sqrt{12}}{\sqrt{3}}[/latex], \(\frac { p }{ q }\) ≠ 0 के रूप में लिखी है, इसलिए यह एक परिमेय संख्या है।
(vii) [/latex]\frac{\sqrt{15}}{\sqrt{3}}[/latex], \(\frac { p }{ q }\), q ≠ 0 के रूप में लिखी है, इसलिए यह एक परिमेय संख्या है।
(viii) एक संख्या x ऐसी है कि x2 अपरिमेय है और x4 परिमेय है। उदाहरण की सहायता से अपने उत्तर का औचित्य दीजिए।
उत्तर:
(i) असत्य है, क्योंकि p अर्थात् √2 पूर्णांक नहीं है।
(ii) असत्य है, क्योंकि 2 और 3 के बीच एक भी पूर्णांक नहीं है।
(iii) असत्य है, क्योंकि 15 और 18 के बीच अपरिमित परिमेय संख्याएँ हैं।
(iv) सत्य है, क्योंकि [/latex]\frac{\sqrt{2}}{\sqrt{3}}[/latex] में √2 एवं √3 पूर्णांक नहीं हैं, इसलिए इसे p/q, q ≠ 0 के रूप में नहीं लिख सकते जहाँ p एवं q पूर्णांक हों।
(v) असत्य है, क्योंकि \(((\sqrt[3]{5})^{2}=\sqrt[3]{25}\) जो अपरिमेय संख्या है।
(vi) सत्य है, क्योंकि \(\frac{\sqrt{12}}{\sqrt{3}}=\sqrt{4}=2\) एक परिमेय संख्या है, किन्तु इसलिए नहीं कि p/q के रूप में लिखी है, अपितु इसलिए कि इसको सरलतम रूप में के रूप में लिखा जा सकता है।
(vii) असत्य है, क्योंकि \(\frac{\sqrt{15}}{\sqrt{3}}=\sqrt{5}\) है जो एक अपरिमेय संख्या है।
(vii) सत्य है, क्योंकि x = [/latex]\frac{\sqrt{4}}{\sqrt{3}}[/latex] तो x2 = ( [/latex]\frac{\sqrt{4}}{\sqrt{3}}[/latex])2 = √3 एक अपरिमेय संख्या है, जबकि x4 = ( [/latex]\frac{\sqrt{4}}{\sqrt{3}}[/latex])4 = 3 एक परिमेय संख्या है।
प्रश्न 4.
औचित्य देते हुए निम्नलिखित को परिमेय या अपरिमेय संख्याओं के रूप में वर्गीकृत कीजिए:
(i) \(\sqrt { 196 }\)
(ii) 3\(\sqrt { 18 }\) ,
(iii) \(\sqrt { \frac { 9 }{ 27 } }\)
(iv) \(\frac{\sqrt{28}}{\sqrt{343}}\)
(v) – \(\sqrt { 0.4 }\),
(vi) \(\frac{\sqrt{12}}{\sqrt{75}}\),
(vi) 0.5918,
(viii) (1 + √5) – (4 + √5),
(ix) 10.124124….
(x) 1.010010001….
उत्तर:
(i) \(\sqrt { 196 }\) = 14 एक परिमेय संख्या है।
(ii) 3\(\sqrt { 18 }\) = 9√2 अपरिमेय है, क्योंकि यह परिमेय संख्या 9 एवं अपरिमेय संख्या √2 का गुणनफल है।
(iii) \(\sqrt { \frac { 9 }{ 27 } }\) = \({ \frac { 1 } { √3 } }\) अपरिमेय है, क्योंकि यह परिमेय संख्या 1 एवं अपरिमेय संख्या √3 का भागफल है।
(vi) परिमेय \(\frac{\sqrt{28}}{\sqrt{343}}=\frac{2 \sqrt{7}}{7 \sqrt{7}}=\frac{2}{7}\) संख्या है, क्योंकि यह दो परिमेय संख्याओं 2 एवं 7 का भागफल है।
(v) अपरिमेय संख्या है क्योंकि \(-\sqrt{0 \cdot 4}=\frac{-2}{\sqrt{10}}\) जो एक परिमेय संख्या – 2 एवं एक अपरिमेय संख्या √10 का भागफल है।
(vi) \(\frac{\sqrt{12}}{\sqrt{75}}=\frac{2 \sqrt{3}}{5 \sqrt{3}}=\frac{2}{5}\) एक परिमेय संख्या है क्योंकि यह दो परिमेय संख्याओं 2 एवं 5 का भागफल है।
(vii) 0.5918 परिमेय संख्या है, क्योंकि दशमलव प्रसार सांत है।
(viii) (1 + √5) – (4 + √5) = 1 + √5 – 4 – √5 = – 3 एक परिमेय संख्या है।
(ix) 10.124124 ….. एक परिमेय संख्या है क्योंकि दशमलव प्रसार असांत आवर्ती है।
(x) 1.010010001 …. एक अपरिमेय संख्या है क्योंकि दशमलव प्रसार असांत अनावर्ती है।
प्रश्न 5.
क्या ऐसी दो अपरिमेय संख्याएँ हैं जिनका योग एवं गुणनफल दोनों ही परिमेय संख्याएँ हैं। अपने उत्तर का औचित्य दीजिए।
उत्तर:
हाँ, (2 + √3) एवं (2 – √3) ऐसी संख्याएँ हैं
जिनका योग = (2 + √3) + (2 – √3) = 2 + √3 + 2 – √3 = 4 परिमेय है
तथा जिनका गुणनफल = (2 + √3)(2 – √3) = 4 – 3 = 1 परिमेय संख्या है।
प्रश्न 6.
सरल कीजिए : (5 + √7) x (5 – √7). (2019)
हल:
(5 + √7) x (5 – √7) = (5)2 – (√7)2 = 25 – 7 = 18
अतः अभीष्ट मान = 18.
MP Board Class 9th Maths Chapter 1 बहु-विकल्पीय प्रश्न
प्रश्न 1.
प्रत्येक परिमेय संख्या है:
(a) एक प्राकृत संख्या
(b) एक पूर्णांक
(c) एक वास्तविक संख्या
(d) एक पूर्णांक संख्या।
उत्तर:
(c) एक वास्तविक संख्या
प्रश्न 2.
दो परिमेय संख्याओं के बीच में:
(a) कोई परिमेय संख्या नहीं होती
(b) ठीक एक परिमेय संख्या होती है
(c) अपरिमित रूप से अनेक परिमेय संख्याएँ होती हैं
(d) केवल परिमेय संख्याएँ होती हैं तथा कोई अपरिमेय संख्या नहीं होती।
उत्तर:
(c) अपरिमित रूप से अनेक परिमेय संख्याएँ होती हैं
प्रश्न 3.
एक परिमेय संख्या का दशमलव निरूपण नहीं हो सकता :
(a) सांत
(b) असांत
(c) असांत आवर्ती
(d) असांत अनावर्ती।
उत्तर:
(d) असांत अनावर्ती
प्रश्न 4.
किन्हीं दो अपरिमेय संख्याओं का गुणनफल होता है:
(a) सदैव एक अपरिमेय संख्या मारमय सख्या
(b) सदैव एक परिमेय संख्या
(c) सदैव एक पूर्णांक
(d) कभी परिमेय संख्या कभी अपरिमेय संख्या।
उत्तर:
(d) कभी परिमेय संख्या कभी अपरिमेय संख्या
प्रश्न 5.
संख्या √2 का दशमलव प्रसार है :
(a) एक परिमित दशमलव
(b) 1:41421
(c) असांत आवर्ती
(d) असांत अनावर्ती।
उत्तर:
(d) असांत अनावर्ती
प्रश्न 6.
निम्नलिखित में से कौन-सी एक अपरिमेय संख्या है :
उत्तर:
(c)
प्रश्न 7.
निम्नलिखित में से कौन-सी एक अपरिमेय संख्या है :
(a) 0.14
(b) \(0.4\overline { 16 }\)
(c) \(0.\overline { 1416 }\)
(d) 0.4014001400014….
उत्तर:
(d) 0.4014001400014….
प्रश्न 8.
√2 और √3 के बीच एक परिमेय संख्या है :
उत्तर:
(c)
प्रश्न 9.
p/q के रूप में 1.999… का मान, जहाँ p और q पूर्णांक हैं तथा q ≠ 0 होगा :
(a) \(\frac { 19 }{ 18 }\)
(b) \(\frac { 1999 }{ 1000 }\)
(c) 2
(d) \(\frac { 1 }{ 9 }\)
उत्तर:
(c) 2
प्रश्न 10.
2√3 + √3 बराबर है :
(a) 2√6
(b) 6
(c) 3√5
(d) 4√6.
उत्तर:
(c) 3√5
प्रश्न 11.
√10 x √15 बराबर है :
(a) 6√5
(b) 5√6
(c) √25
(d) 10√5.
उत्तर:
(b) 5√6
प्रश्न 12.
\(\frac{1}{\sqrt{7}-2}\) के परिमेयीकरण करने पर प्राप्त संख्या है :
उत्तर:
(a)
प्रश्न 13.
\(\frac{1}{\sqrt{9}-\sqrt{8}}\) बराबर है :
उत्तर:
(d)
प्रश्न 14.
\(\frac{7}{3 \sqrt{3}-2 \sqrt{2}}\) के हर का परिमेयीकरण करने पर हमें प्राप्त हर है :
(a) 13
(b) 19
(c) 5
(d) 35
उत्तर:
(b) 19
प्रश्न 15.
\(\frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}}\) का मान बराबर है :
(a) √2
(b) 2
(c) 4
(d) 8
उत्तर:
(b) 2
प्रश्न 16.
यदि √2 = 1.4142 है, तो \(\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\) बराबर है :
(a) 2.4142
(b) 5.8282
(c) 0.4142
(d) 0.1718.
उत्तर:
(c) 0.4142
प्रश्न 17.
\(\sqrt[4]{\sqrt[3]{2^{2}}}\) बराबर है :
(a) 2-1/6
(b) 2-6
(c) 21/6
(d) 26
उत्तर:
(c) 21/6
प्रश्न 18.
गुणनफल 12 x 4/2 x 12/32 बराबर है :
(a) √2
(b) 2
(c) \(\sqrt[2]{2}\)
(d) 1
उत्तर:
(b) 2
प्रश्न 19.
\(\sqrt[4]{(81)^{-2}}\) का मान है :
(a) \(\frac { 1 }{ 9 }\)
(b) \(\frac { 1 }{ 3 }\)
(c) 9
(d) \(\frac { 1 }{ 81 }\)
उत्तर:
(a) \(\frac { 1 }{ 9 }\)
प्रश्न 20.
(256)0.16 x (256)0.09 का मान है:
(a) 4
(b) 16
(c) 64
(d) 256.25
उत्तर:
(a) 4
प्रश्न 21.
निम्नलिखित में से कौन x के बराबर है :
उत्तर:
(c)
प्रश्न 22.
निम्नलिखित से कौन [(5/6)1/5]-1/6 के बराबर नहीं है :
उत्तर:
(a)
प्रश्न 23.
किसी वास्तविक संख्या का निरपेक्ष मान सदैव होता है : (2018)
(a) प्राकृत संख्या
(b) परिमेय संख्या
(c) ऋण संख्या
(d) धन संख्या।
उत्तर:
(d) धन संख्या
प्रश्न 24.
निम्न में से कौन-सी परिमेय संख्या नहीं है: (2019)
(a) \(\sqrt { 23 }\)
(b) \(\sqrt { 225 }\)
(c) \(\sqrt { 249 }\)
(d) \(5.\overline { 328 }\)
उत्तर:
(a) \(\sqrt { 23 }\)
प्रश्न 25.
निम्नलिखित में कौन-सी अपरिमेय संख्या है : (2019)
(a) 0.23
(b) 0:2023002300023 ……..
(c) \(0.23\overline { 25 }\)
(d) \(0.\overline { 2325 }\)
उत्तर:
(b) 0:2023002300023 ……..
प्रश्न 26.
am x an का मान होगा : (2019)
(a) am+n
(b) amn
(c) am-n
(d) am/n
उत्तर:
(a) am+n
रिक्त स्थानों की पूर्ति
1. सभी प्राकृत संख्याएँ एवं शून्य मिलकर ………कहलाती हैं।
2. जो संख्याएँ p/q, q ≠ 0 के रूप में व्यक्त की जा सकती हैं, जहाँ p, q पूर्णांक है, ………. कहलाती हैं।
3. जो संख्याएँ p/q, q ≠ 0 के रूप में व्यक्त नहीं की जा सकती; जहाँ p, q पूर्णांक हैं ……….. कहलाती हैं।
4. दो परिमेय संख्याओं के मध्य ……….. परिमेय संख्याएँ होती हैं। (2019)
5. दो अपरिमेय संख्याओं के मध्य ………. अपरिमेय संख्याएँ होती हैं।
6. 3√5 का करणी घात ………. है। (2018)
7. सबसे छोटी प्राकृत संख्या ……….. है। (2019)
उत्तर:
1. पूर्णांक संख्याएँ,
2. परिमेय संख्याएँ,
3. अपरिमेय संख्याएँ,
4. अनन्तत: अनेक,
5. अनन्ततः अनेक,
6. पाँच (5),
7. 1 (एक)।
जोड़ी मिलान
स्तम्भ ‘A’ स्तम्भ ‘B’
1. सांत दशमलव प्रसार (a) वास्तविक संख्याएँ
2. अनवसानी अनावर्ती दशमलव प्रसार (b) पूर्ण संख्याएँ
3. 8-1/3 (2019) (c) परिमेय संख्या
4. सभी परिमेय एवं अपरिमेय संख्याएँ (d) अपरिमेय संख्या
5. शून्य एवं प्राकृत संख्याएँ मिलकर (e) 1/2
उत्तर:
1.→(c), 2.→(d), 3.→(e), 4.→(a), 5.→(b).
सत्य/असत्य कथन
1. दो परिमेय संख्याओं का योग सदैव परिमेय होता है।
2. दो अपरिमेय संख्याओं का योग सदैव अपरिमेय होता है
3. प्रत्येक पूर्णांक परिमेय संख्या होती है।
4. प्रत्येक वास्तविक संख्या परिमेय संख्या होती है।
5. प्रत्येक अपरिमेय संख्या वास्तविक संख्या होती है।
6. \(\frac { 32 }{ 48 }\), \(\frac { 2 }{ 3 }\) के तुल्य परिमेय संख्या है। (2019)
7. √2 एक परिमेय संख्या है। (2019)
उत्तर:
1. सत्य,
2. असत्य
3. सत्य,
4. असत्य,
5. सत्य,
6. सत्य,
7. असत्य।
एक शब्द/वाक्य में उत्तर
1. am x an का सरलतम रूप क्या होगा?
2. am x bn को सरल रूप में लिखिए।
3. am ÷ an का सरल रूप लिखिए।
4. a° का मान कितना होता है ?
5. a-m को धनात्मक घातांक में लिखिए।
6. √3 का मान लिखिए। (2019)
उत्तर:
1. am+n,
2. (ab)n,
3. am-n,
4. 1,
5. (1/a)m ,
6. 1.732……. .