MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Additional Questions

MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Additional Questions

MP Board Class 9th Maths Chapter 7 अतिरिक्त परीक्षोपयोगी प्रश्न

MP Board Class 9th Maths Chapter 7 दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
ABCD एक चतुर्भुज है, जिसमें AB = BC और AD = CD। दर्शाइए कि BD दोनों कोणों ABC और ADC को समद्विभाजित करता है।
हल:
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 14
चित्र 7.34
दिया है : एक चतुर्भुज ABCD जिससे
AB = BC और AD = CD। BD चतुर्भुज ABCD का एक विकर्ण है।
अब ∆ABD और ∆CBD में,
चूँकि AB = BC (दिया है)
AD = CD (दिया है)
एवं BD = BD (उभयनिष्ठ है)
⇒ ∆ABD ≅ ∆CBD (SSS सर्वांगसमता प्रमेय)
⇒ ∠ABD ≅ ∠CBD एवं ∠ADB = ∠CDB (CPCT)
अत: BD दोनों कोण ∠ABC एवं ∠ADC को समद्विभाजित करता है। इति सिद्धम्

प्रश्न 2.
ABC एक समकोण त्रिभुज है जिससे AB = AC, CA का समद्विभाजक BC से D पर मिलता है। सिद्ध कीजिए कि BC = 2AD.
हल:
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 15
चित्र 7.34
दिया है: ABC एक समकोण त्रिभुज जिसमें AB = AC, ∠A समकोण है जिसका समद्विभाजक AD, BC को बिन्दु D पर मिलता है।
अब ∠CAD = ∠BAD = 45° (∵ ∠A समकोण है तथा AD इसका समद्विभाजक है) …(1)
∠ACB = ∠ABC = 45° ..(2) (∵AB = AC के सम्मुख चित्र 7.35 कोण हैं तथा ∠A = 90°)
∠CAD = ∠BAD= ∠ACB = ∠ABC = 45° ….(3) [समी. (1) एवं (2) से]
अब ∆ABD में, ∠BAD = ∠ABC [समीकरण (3) से]
BD = AD (समान कोणों की सम्मुख भुजाएँ हैं) …(4)
एवं ∆ACD में, ∠CAD = ∠ACB [समीकरण (3) से]
⇒ CD = AD (समान कोणों की सम्मुख भुजाएँ हैं) …(5)
⇒ BD + CD = AD + AD = 2AD [समीकरण (4) और (5) से]
अत: BC = 2AD. (∵ BD + CD = BC चित्रानुसार) इति सिद्धम्

प्रश्न 3.
ABC एक समद्विबाहु त्रिभुज है, जिससे AC = BC ⊥ AD और BE क्रमशः BC और AC पर शीर्ष लम्ब हैं। सिद्ध कीजिए कि AE = BD.
हल:
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 16
चित्र 7.36
दिया है : ABC एक समद्विबाहु त्रिभुज जिससे AC = BC एवं AD ⊥ BC तथा BE ⊥ AC
∠ADC = ∠BEC = 90° [∵ AD ⊥ BC एवं BE ⊥ AC (दिया है)]
अब ∆ADC और ∆BEC में,
चूँकि ∠ADC = ∠BEC [समीकरण (1) से]
∠C = ∠C (उभयनिष्ठ है)
एवं AC = BC (दिया है)
⇒ ∆ADC = ∆BEC (ADS सर्वांगसमता प्रमेय)
⇒ CD = CE अर्थात् EC = DC (CPCT) …(2)
लेकिन AC = BC (दिया है) …(3)
⇒ AC – EC = BC – DC [समीकरण (3) और (2) से]
अतः AE = BD. (चित्रानुसार AC – EC = AE एवं BC – DC = BD) इति सिद्धम्

MP Board Solutions

प्रश्न 4.
एक त्रिभुज ABC में, D भुजा AC का मध्य-बिन्दु है, जहाँ BD = \(\frac { 1 }{ 2 }\)AC है। दर्शाइए कि ∠ABC एक समकोण है।
हल:
दिया है : ∆ABC में D, AC का मध्य-बिन्दु एवं BD = \(\frac { 1 }{ 2 }\)AC.
AD = CD = \(\frac { 1 }{ 2 }\)AC …(1)
(D, AC का मध्य-बिन्दु दिया है)
BD = \(\frac { 1 }{ 2 }\)AC (दिया है) …(2)
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 17
चित्र 7.37
⇒ AD = CD = BD [समी. (1) और (2) से] …(3)
∆ABD में, AD = BD [समीकरण (3) से]
⇒ ∠ABD = ∠BAD (बराबर भुजाओं के सम्मुख कोण हैं) …(4)
एवं ∆CBD में, CD = BD [समीकरण (3) से]
∠CBD = ∠BCD …(5) (बराबर भुजाओं के सम्मुख कोण हैं)
∠ABD+ ∠CBD = ∠BAD+ ∠BCD [समी. (4) और (5) से]
∠ABC = ∠BAC + ∠BCA (चित्रानुसार) लेकिन
∠ABC + ∠BAC + ∠BCA = 180° (त्रिभुज के अन्त: कोण)
∠ABC = ∠BAC + ∠BCA = 180°/2 = 90°
अतः ∠ABC एक समकोण है। इति सिद्धम्

प्रश्न 5.
ABCD एक चतुर्भुज इस प्रकार है कि विकर्ण AC दोनों कोणों A और C को समद्विभाजित करता हैं। सिद्ध कीजिए कि
AB = AD और CB = CD है।
हल:
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 18
चित्र 7.38
दिया है : एक चतुर्भुज ABCD जिसमें विकर्ण AC कोण A और C का समद्विभाजक है अर्थात्
∠DAC = ∠BAC …(1)
और ∠DCA = ∠BCA …(2)
अब ∆ADC और ∆ABC में, चूँकि
∠DAC = ∠BAC [समी. (1) से]
∠DCA = ∠BCA [समी. (2) से]
एवं AC = AC (उभयनिष्ठ है)
⇒ ∆ADC ≅ ∆ABC (ASA सर्वांगसमता प्रमेय)
AB = AD और CB = CD. (CPCT) इति सिद्धम्

MP Board Class 9th Maths Chapter 7 लघु उत्तरीय प्रश्न

प्रश्न 1.
ABC एक समद्विबाहु त्रिभुज है, जिसमें AB = AC है तथा BD और CE इसकी दो मध्यिाकाएँ हैं। दर्शाइए कि BD = CE.
हल:
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 19
चित्र 7.39
दिया है : एक समद्विबाहु त्रिभुज ABC जिसमें AB = AC तथा BD एवं CE इसमें दो मध्यिकाएँ हैं, अर्थात्
AE = EB = \(\frac { 1 }{ 2 }\)AB TO AD = DC = \(\frac { 1 }{ 2 }\) AC
⇒ EB = DC
अब ∆EBC और ∆DBC में,
चूँकि EB = DC (सिद्ध कर चुके हैं)
∠EBC = ∠DCB (AB = AC के सम्मुख कोण हैं)
एवं BC = BC (उभयनिष्ठ है)
⇒ ∆EBC ≅ ∆DBC (SAS सर्वांगसमता प्रमेय)
अतः BD = CE. (CPCT) इति सिद्धम्

MP Board Solutions

प्रश्न 2.
संलग्न चित्र में D और E त्रिभुज ABC की भुजा BC पर दो बिन्दु इस प्रकार स्थित हैं कि BD = CE और AD = AE है। तो दर्शाइए कि ∆ABD ≅ ∆ACE है।
हल:
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 20
चित्र 7.40
दिया है : ∆ABC की भुजा BC पर दो बिन्दु D एवं E इस प्रकार हैं कि BD = CE और AD = AE.
∠ADE = ∠AED
⇒ ∠ADB = ∠AEC. (बराबर कोण के सम्पूरक. कोण हैं)
अब ∆ADB और ∆AEC में,
चूँकि AD = AE (दिया है)
∠ADB = ∠AEC (सिद्ध कर चुके हैं)
एवं BD = EC
अतः ∆ABD ≅ ∆ACE. (SAS सर्वांगसमता प्रमेय) इति सिद्धम्

प्रश्न 3.
संलग्न चित्र में BA ⊥ AC और DE ⊥ DF इस प्रकार हैं कि BA = DE और BF = EC हैं। दशाईए कि ∆ABC ≅ ∆DEF.
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 21
हल:
चूँकि BF = EC (दिया है)
⇒ BF + FC = EC + FC (बराबर संख्याओं में समान संख्या का योग)
⇒ BC = FE (चित्रानुसार) .
∴ समकोण ∆ABC और समकोण ∆DEF में, कर्ण BC = FE (सिद्ध कर चुके हैं)
एवं BA = DE (दिया है)
अतः ∆ABC ≅ ∆DEE (RHS सर्वांगसमता प्रमेय) इति सिद्धम्

प्रश्न 4.
एक ∆PSR की भुजा SR पर एक बिन्दु 0 इस प्रकार स्थित है कि PQ = PR है। सिद्ध कीजिए कि- PS >PQ.
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 22
चित्र 7.42
हल:
त्रिभुज PSR में SR पर बिन्दु ए इस प्रकार दिया है कि PQ = PR
⇒ ∠PQR = ∠PRQ (बराबर भुजाओं के सम्मुख कोण हैं)
लेकिन ∠PQR > ∠PSQ (बहिष्कोण है)
⇒ ∠PRS > ∠PSR (∠PRS = ∠PRO = ∠PQR एवं ∠PSR = ∠PSQ)
⇒ PS > PQ. (बड़े कोण की सम्मुख भुजा है।)
अतः (PQ > PR) इति सिद्धम्

प्रश्न 5.
∆PQR की भुजा QR पर कोई बिन्दु स्थित है। दर्शाइए कि PQ + QR + RP> 2PS.
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 23
चित्र 7.43
हल:
प्रश्नानुसार (संलग्न चित्र से)
∆PQS में, PQ + QS > PS (दो भुजाओं का योग तीसरी से बड़ा होता है)…(1)
एवं ∆PSR में, RP + SR > PS (दो भुजाओं का योग तीसरी से बड़ा होता है) …(2)
⇒ PQ+ QS + RP + SR > PS + PS [समीकरण (1) और (2) से]
⇒ PQ + QS + SR + RP > 2PS
अतः PQ+ QR + RP > 2PS. (QS + SR = QR चित्रांनुसार) इति सिद्धम्

MP Board Solutions

प्रश्न 6.
AB = AC वाले एक ∆ABC की भुजा AC पर कोई बिन्दु D स्थित है। दर्शाइए कि CD < BD है।
हल:
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 24
चित्र 7.44
∆ABC में, AB = AC तथा AC पर बिन्दु D है।
∠ABC = ∠ACB (AB = AC के सम्मुख कोण हैं)
लेकिन ∠DBC < ∠ABC (किसी संख्या का अंश संख्या से कम होता है)
= ∠DBC < ∠ACB (∵ ∠ABC = ∠ACB)
अतः CD < BD. (छोटे कोण के सामने की भुजा छोटी होती है) इति सिद्धम्

प्रश्न 7.
संलग्न चित्र में l || m है तथा m रेखाखण्ड AB का मध्य-बिन्दु है। दर्शाइए M किसी भी रेखाखण्ड CD का मध्य-बिन्दु है जिसके अन्तःबिन्दु क्रमशः l और m पर स्थित हों।
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 25
चित्र 7.45
हल:
l || m को तिर्यक रेखाखण्ड AB क्रमशः A और B पर मिलती है। ∠CAB = ∠ABD (एकान्तर कोण हैं) …(1)
l ||m को तिर्यक रेखाखण्ड CD क्रमश: C और D पर मिलती है। ∠ACD = ∠BDC (एकान्तर कोण है) …(2)
अब ∆AMC और ∆BMD में, चूँकि ∠CAM = ∠MBD [समी. (1) और ∠CAB = ∠CAM एवं ∠MBD = ∠ABD]
AM = BM (AB का मध्य-बिन्दु M दिया है)
एवं ∠ACM = ∠BDM [समी. (2) और ∠ACD = ∠ACM एवं ∠BDC = ∠BDM]
∆AMC ≅ ∆BMD (ASA सर्वांगसमता प्रमेय) CM = DM . (CPCT)
अत: M किसी भी रेखाखण्ड CD का भी मध्य-बिन्दु है। इति सिद्धम्

प्रश्न 8.
AB = AC वाले एक समद्विबाहु त्रिभुज के कोणों B और C के समद्विभाजक परस्पर O पर प्रतिच्छेद करते हैं। BO को एक बिन्दु M तक बढ़ाया गया है। सिद्ध कीजिए ∠MOC = ∠ABC है।
हल:
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 26
चित्र 7.46
ज्ञात है : AB = AC ⇒ ∠ABC = ∠ACB (बराबर भुजाओं के सम्मुख कोण हैं) चूँकि BO एवं CO क्रमश:
∠B एवं ∠C के समद्विभाजक है।
⇒ ∠OBC = \(\frac { 1 }{ 2 }\)ABC
एवं ∠OCB = \(\frac { 1 }{ 2 }\)∠ACB
⇒ ∠MOC = ∠OBC + ∠OCB (∠MOC, ∆OBC का बहिष्कोण है)
⇒ ∠MOC = \(\frac { 1 }{ 2 }\)∠ABC + \(\frac { 1 }{ 2 }\)∠ACB
अतः ∠MOC = ∠ABC. (∠ABC = ∠ACB सिद्ध कर चुके हैं) इति सिद्धम्

MP Board Class 9th Maths Chapter 7 अति लघु उत्तरीय प्रश्न

प्रश्न 1.
त्रिभुजों ABC और POR में ∠A = 20 और ∠B = ∠R हैं। ∆POR की कौन-सी भुजा ∆ABC की भुजा AB के बराबर होनी चाहिए कि दोनों त्रिभुज सर्वांगसम हों ? अपने उत्तर के लिए कारण दीजि
उत्तर:
QR, क्योंकि यह AB के संगत भुजा है। (ASA सर्वांगसमता)।

प्रश्न 2.
त्रिभुजों ABC और POR में ∠A = Q और ∠B = ∠R। POR की कौन-सी भुजा ∆ABC की BC भुजा के बराबर होनी चाहिए कि दोनों त्रिभुज सर्वांगसम हों ? अपने उत्तर के लिए कारण दीजिए।
उत्तर:
RP, क्योंकि यह BC के संगत भुजा है। (AAS सर्वांगसमता)

प्रश्न 3.
“यदि किसी त्रिभुज की दो भुजाओं और एक कोण दूसरे त्रिभुज की दो भुजाओं और एक कोण के बराबर हों, तो दोनों त्रिभुज अवश्य ही सर्वांगसम होने चाहिए।” क्या यह कथन सत्य है ? क्यों ?
उत्तर:
कथन असत्य है, क्योंकि भुजाओं के अंतर्गत कोण होना चाहिए।

प्रश्न 4.
“यदि किसी त्रिभुज के दो कोण एक भुजा, दूसरे त्रिभुज के दो कोण और एक भुजा के बराबर हों, तो दोनों त्रिभुज अवश्य ही सर्वांगसम होने चाहिए।” क्या यह कथन सत्य है ? क्यों ?
उत्तर:
कथन असत्य है, क्योंकि भुजाएँ संगत होनी चाहिए।

प्रश्न 5.
क्या भुजाओं की लम्बाइयों 4 सेमी, 3 सेमी और 7 सेमी लेकर किसी त्रिभुज की रचना की जा सकती है ? अपने उत्तर के लिए कारण दीजिए।
उत्तर:
त्रिभुज की रचना नहीं की जा सकती, क्योंकि यहाँ दो भुजाओं का योग तीसरी के बराबर है (यथा 4 + 3 = 7) जबकि यह बड़ा होना चाहिए।

प्रश्न 6.
∆ABC ≅ ∆RPQ दिया हुआ है। क्या यह कहना सत्य है कि BC = QR ? क्यों ?
उत्तर:
कथन सत्य नहीं है, क्योंकि भुजाएँ संगत होनी चाहिए।

MP Board Solutions

प्रश्न 7.
यदि ∆POR ≅ ∆EDF है तो क्या यह कहना सत्य है कि PR = EF ? अपने उत्तर के लिए कारण दीजिए।
उत्तर:
कथन सत्य है, क्योंकि ये संगत भुजाएँ हैं।

प्रश्न 8.
∆POR में ∠P = 70° और ∠R = 30° है। उस त्रिभुज की कौन-सी भुजा सबसे लम्बी है ? अपने उत्तर के लिए कारण दीजिए।
उत्तर:
भुजा PR सबसे लम्बी है, क्योंकि ∠Q = 180° – 70° – 30° = 80° सबसे बड़ा है।

प्रश्न 9.
AD किसी त्रिभुज ABC की माध्यिका है। क्या यह कहना सत्य है कि AB + BC + CA > 2AD ? अपने उत्तर के लिए कारण दीजिए।
उत्तर:
कथन सत्य हैं, क्योंकि AB + BD > AD एवं AC + CD > AD.

प्रश्न 10.
M किसी त्रिभुज ABC की भुजा BC पर स्थित एक बिन्दु ऐसा है कि AM कोण BAC का समद्विभाजक है। क्या यह कहना सत्य है कि त्रिभुज का परिमाप 2AM से अधिक है ? अपने
उत्तर के लिए कारण दीजिए।
उत्तर:
कथन सत्य है, क्योंकि AB + BM > AM एवं AC + CM > AM.

प्रश्न 11.
क्या भुजाओं की लम्बाइयाँ 9 सेमी, 7 सेमी और 17 सेमी लेकर किसी त्रिभुज की रचना की जा सकती है ? अपने उत्तर के लिए कारण दीजिए।
उत्तर:
त्रिभुज की रचना नहीं की जा सकती, क्योंकि 9 + 7 < 17 जबकि दो भुजाओं का योग तीसरी से बड़ा होना चाहिए।

प्रश्न 12.
क्या भुजाओं की लम्बाइयों 8 सेमी, 7 सेमी और 4 सेमी लेकर किसी त्रिभुज की रचना की जा सकती है ? अपने उत्तर का कारण दीजिए।
उत्तर:
हाँ, रचना की जा सकती है। क्योंकि प्रत्येक स्थिति दो भुजाओं का योग तीसरी भुजा से बड़ा है।

MP Board Class 9th Maths Chapter 7 वस्तुनिष्ठ प्रश्न

बहु-विकल्पीय प्रश्न

प्रश्न 1.
निम्नलिखित में से कौन त्रिभुजों की सर्वांगसमता की एक कसौटी नहीं है :
(a) SAS
(b) ASA
(C) SSA
(d) SSS.
उत्तर:
(C) SSA

प्रश्न 2.
यदि AB = QR एवं BC = PR और CA = PQ है, तो :
(a) ∆ABC ≅ ∆PQR
(b) ∆CBA ≅ ∆PRQ
(c) ∆BAC ≅ ∆RPQ
(d) ∆PQR ≅ ∆BCA.
उत्तर:
(b) ∆CBA ≅ ∆PRQ

प्रश्न 3.
∆ABC में AB = AC और ∠B = 50° है तब ∠C बराबर है:
(a) 40°
(b) 50°
(c) 80°
(d) 130°.
उत्तर:
(b) 50°

प्रश्न 4.
∆ABC में BC = AB और ∠B = 80° तब ∠A बराबर है :
(a) 80°
(b) 40°
(c) 50°
(d) 100°.
उत्तर:
(c) 50°

प्रश्न 5.
∆POR में ∠R= ∠P तथा QR = 4 cm और PR = 5 cm है, तब PQ की लम्बाई है:
(a) 4 cm
(b) 5 cm
(c) 2 cm
(d) 2.5 cm.
उत्तर:
(a) 4 cm

प्रश्न 6.
D एक त्रिभुज ABC की भुजा BC पर एक बिन्दु इस प्रकार स्थित है कि AD कोण BAC को समद्विभाजित करता है। तब :
(a) BD = CD
(b) BA > BD
(c) BD > BA .
(d) CD > CA.
उत्तर:
(b) BA > BD

प्रश्न 7.
यह दिया है कि ∆ABC ≅ ∆FDE है तथा AB = 5 cm, ∠B = 40° एवं ∠A= 80° तब :
(a) DF = 5 cm, ∠F = 60°
(b) DF = 5 cm, ∠E = 60°
(c) DE = 5 cm, ∠F = 60°
(d) DE = 5 cm, ∠D = 40°.
उत्तर:
(b) DF = 5 cm, ∠E = 60°

MP Board Solutions

प्रश्न 8.
एक त्रिभुज की दो भुजाओं की लम्बाइयाँ 5 cm और 1.5 cm है। इस त्रिभुज की तीसरी भुजा की लम्बाई निम्नलिखित नहीं हो सकती :
(a) 3.6 cm
(b) 4.1 cm
(c) 3.8 cm
(d) 3.4 cm.
उत्तर:
(d) 3.4 cm.

प्रश्न 9.
∆POR में यदि ∠P< ∠ R > ∠Q है, तो :
(a) QR > PR
(b) PQ > PR
(c) PQ < PR (d) QR > PR.
उत्तर:
(b) PQ > PR

प्रश्न 10.
∆ABC और ∆PQR में AB = AC, ∠C = ∠P और ∠B = 20 हैं। ये दोनों त्रिभुज हैं :
(a) समद्विबाहु परन्तु सर्वांगसम नहीं
(b) समद्विबाहु, सर्वांगसम
(c) सर्वांगसम परन्तु समद्विबाहु नहीं
(d) न तो सर्वांगसम और न हीं समद्विबाहु।
उत्तर:
(a) समद्विबाहु परन्तु सर्वांगसम नहीं

प्रश्न 11.
त्रिभुजों ABC और DEF में AB = FD तथा ∠A = ∠D है। दोनों त्रिभुज SAS अभिगृहीत से सर्वांगसम होंगे यदि :
(a) BC = EF
(b) AC = DE
(c) AC = EF
(d) BC = DE.
उत्तर:
(b) AC = DE

प्रश्न 12.
समान आकार एवं समान आकृति वाली आकृतियाँ होती हैं :
(a) बराबर
(b) समान
(c) सर्वांगसम
(d) समरूप।
उत्तर:
(c) सर्वांगसम

प्रश्न 13.
समकोण त्रिभुज में सबसे बड़ी भुजा होती है :
(a) लम्ब
(b) आधार
(c) कर्ण
(d) रेखा।
उत्तर:
(c) कर्ण

प्रश्न 14.
समबाहु त्रिभुज के प्रत्येक कोण का मान होता है : (2019)
(a) 90°
(b) 30°
(c) 60°
(d) 120°.
उत्तर:
(c) 60°

प्रश्न 15.
पाइथागोरस प्रमेय किस त्रिभुज के लिए प्रसिद्ध है :
(a) समबाहु त्रिभुज
(b) सर्वांगसम त्रिभुज
(c) समद्विबाहु त्रिभुज
(d) समकोण त्रिभुज।
उत्तर:
(d) समकोण त्रिभुज

MP Board Solutions

रिक्त स्थानों की पूर्ति
1. समबाहु त्रिभुज का प्रत्येक कोण ……… होता है।
2. किसी त्रिभुज की दो भुजाओं का योग तीसरी भुजा से ……….. होता है।
3. समकोण त्रिभुज की सबसे बड़ी भुजा ………… होती है।
4. त्रिभुज के तीनों अन्तः कोणों का योग ………….. होता है।
5. समान आकार एवं समान आकृति वाली आकृतियाँ ……… होती हैं।
6. किसी त्रिभुज की दो भुजाएँ असमान हों तो, बड़ी भुजा के सामने का कोण ………. होता है।
7. किसी त्रिभुज की समान भुजाओं के सम्मुख कोण ………….. होते हैं।
8. किसी त्रिभुज में बड़े कोण के सामने की भुजा ………….. होती है।
उत्तर:
1. 60°,
2. बड़ा,
3. कर्ण,
4. 180°,
5. सर्वांगसम,
6. बड़ा,
7. बराबर,
8. बड़ी।

जोड़ी मिलान
स्तम्भ ‘A’                                                         स्तम्भ ‘B’
1. त्रिभुज जिसकी तीनों भुजाएँ समान हों     (a) अधिक कोण त्रिभुज
2. त्रिभुज जिसकी दो भुजाएँ समान हों        (b) न्यूनकोण त्रिभुज
3. त्रिभुज जिसका एक कोण 90° हो           (c) समबाहु त्रिभुज
4. त्रिभुज जिसका एक कोण अधिक कोण हो (d) केन्द्रक
5. त्रिभुज जिसका प्रत्येक कोण न्यूनकोण हो (e) समकोण त्रिभुज
6. माध्यिकाओं के संगमन बिन्दु को कहते हैं (2018) (f) समद्विबाहु त्रिभुज
उत्तर:
1. → (c),
2. → (1),
3. → (e),
4. → (a),
5. → (b),
6. → (d).

सत्य/असत्य कथन
1. समद्विबाहु त्रिभुज के तीनों कोण बराबर होते हैं। (2018)
2. किसी त्रिभुज के बड़े कोण के सामने की भुजा छोटी होती है।
3. किसी त्रिभुज की दो भुजाओं का योग, तीसरी भुजा से बड़ा होता है।
4. किसी रेखा के बाहर स्थित किसी बिन्दु से रेखा तक जितने रेखाखण्ड खींचे जा सकते हैं उनमें लम्ब सबसे छोटा होता है।
5. सभी वृत्त सर्वांगसम होते हैं।
6. यदि दो त्रिभुजों की संगत भुजाएँ बराबर हों, तो त्रिभुज बराबर हों, तो त्रिभुज सर्वांगसम होते हैं। (2019)
7. त्रिभुजों के तीनों कोणों का योग 180° होता है। (2019)
8. सर्वांगसम त्रिभुज में संगत भाग बराबर होते हैं। (2019)
उत्तर:
1. असत्य,
2. असत्य,
3. सत्य,
4. सत्य,
5. असत्य,
6. सत्य,
7. सत्य,
8. सत्य।

MP Board Solutions

एक शब्द/वाक्य में उत्तर

1. किसी त्रिभुज में अधिकतम कितने समकोण हो सकते हैं ?
2. किसी त्रिभुज में अधिकतम कितने अधिक कोण हो सकते हैं ?
3. किसी त्रिभुज में कम-से-कम कितने न्यूनकोण हो सकते हैं ?
4. किसी त्रिभुज के बहिष्कोण और अन्तः कोणों में क्या सम्बन्ध होता है ?
5. समकोण समद्विबाहु त्रिभुज के प्रत्यके न्यूनकोण का मान कितना होता है ?
उत्तर:
1. एक,
2. एक,
3. दो,
4. त्रिभुज का बहिष्कोण सम्मुख अन्त:कोणों के योग के बराबर है अर्थात् प्रत्येक सम्मुख अन्तः कोण से बड़ा होता है,
5. 45° ।

MP Board Class 9th Maths Solutions

MP Board Class 9th Maths Solutions Chapter 6 रेखाएँ और कोण Additional Questions

MP Board Class 9th Maths Solutions Chapter 6 रेखाएँ और कोण Additional Questions

MP Board Class 9th Maths Chapter 6 अतिरिक्त परीक्षोपयोगी प्रश्न

MP Board Class 9th Maths Chapter 6 दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
एक त्रिभुज ABC के कोण B और C के समद्विभाजक परस्पर बिन्दु 0 पर प्रतिच्छेद करते हैं। सिद्ध कीजिए कि-
∠BOC = 90° + \(\frac { 1 }{ 2 }\) ∠A.
MP Board Class 9th Maths Solutions Chapter 6 रेखाएँ और कोण Ex 6.3 11
हल:
दिया है :
∆ABC जिसके ∠B एवं ∠C के समद्विभाजक BO एवं CO परस्पर बिन्दु O पर प्रतिच्छेद करते हैं तो सिद्ध करना है कि-
∠BOC = 90° + \(\frac { 1 }{ 2 }\) ∠A.
उपपत्ति : त्रिभुज ABC में,
∵∠A + ∠ABC + ∠ACB = 180° (त्रिभुज का कोण योग गुण)
= \(\frac { 1 }{ 2 }\)∠A + \(\frac { 1 }{ 2 }\)∠ABC + \(\frac { 1 }{ 2 }\) ∠ACB = \(\frac { 1 }{ 2 }\) x 180° = 90°
⇒ \(\frac { 1 }{ 2 }\) ∠A + ∠OBC + ∠OCB = 90° (क्योंकि BO एवं CO क्रमशः ∠B एवं ∠C के समद्विभाजक हैं)
⇒ ∠OBC + ∠OCB = 90° \(\frac { 1 }{ 2 }\) ∠A ….(1)
लेकिन ∠BOC + ∠OBC + ∠OCB = 180° (त्रिभुज का कोण योग गुण)
⇒ ∠OBC + ∠OCB = 180° – ∠BOC …(2)
⇒ 90° – \(\frac { 1 }{ 2 }\) ∠A = 180° – ∠BOC [समीकरण (1) एवं (2) से]
⇒ ∠BOC = 180° – 90° + \(\frac { 1 }{ 2 }\) ∠A
अतः ∠BOC = 90° + 1 इति सिद्धम्

प्रश्न 2.
यदि दो रेखाएँ प्रतिच्छेद करती है तो सिद्ध कीजिए कि शीर्षाभिमुख कोण बराबर होते हैं।
हल:
मान लीजिए दो रेखाएँ AB एवं CD परस्पर O बिन्दु पर प्रतिच्छेद करती हैं तो सिद्ध करना है कि-
∠AOC = ∠BOD एवं ∠BOC = ∠AOD
उपपत्ति: ∵ ∠AOC + ∠COB = 180° (∵ रेखा AB के बिन्दु O पर एक ही ओर बने कोण हैं।)
MP Board Class 9th Maths Solutions Chapter 6 रेखाएँ और कोण Ex 6.3 12
चित्र 6.37
∵ ∠COB + ∠BOD = 180° …(2) (∵ रेखा CD के बिन्दु 0 पर एक ही ओर बने कोण हैं।)
⇒ ∠AOC + ∠COB = ∠COB + ∠BOD [समीकरण (1) एवं (2) से]
⇒ ∠AOC = ∠BOD (∠COB उभयनिष्ठ है)
इसी प्रकार सिद्ध कर सकते हैं कि ∠BOC = ∠AOD.
अतः यदि दो रेखाएँ परस्पर प्रतिच्छेद करती हैं तो शीर्षाभिमुख कोण बराबर होते हैं। इति सिद्धम्

प्रश्न 3.
∆ABC के अन्तःकोण ∠B और बहिष्कोण ∠ACD के समद्विभाजक बिन्दु T पर प्रतिच्छेद करते हैं। सिद्ध कीजिए कि ∠BTC = \(\frac { 1 }{ 2 }\)∠BAC.
हल:
ज्ञात है : ∆ABC के अन्त:कोण ∠B एवं बहिष्कोण ∠ACD के समद्विभाजक बिन्दु T पर प्रतिच्छेद करते हैं।
सिद्ध करना है: ∠BTC = \(\frac { 1 }{ 2 }\)∠BAC.
उपपत्ति : ∵ ∆ABC का बहिष्कोण ∠ACD
MP Board Class 9th Maths Solutions Chapter 6 रेखाएँ और कोण Ex 6.3 13
चित्र 6.38
⇒ ∠ACD = ∠BAC + ∠ABC
⇒ \(\frac { 1 }{ 2 }\)∠ACD = \(\frac { 1 }{ 2 }\)∠BAC + \(\frac { 1 }{ 2 }\) ∠ABC
⇒ ∠TCD = \(\frac { 1 }{ 2 }\)∠BAC + ∠TBC …(1)
(चूँकि BT एवं CT क्रमशः ∠ABC एवं ∠ACD के समद्विभाजक हैं।)
∵ ∆TBC का बहिष्कोण ∠TCD है। ∠TCD = ∠TBC + ∠BTC …(2)
⇒ ∠TBC + ∠BTC = \(\frac { 1 }{ 2 }\) ∠BAC + ∠TBC [समीकरण (1) एवं (2) से]
अतः ∠BTC = \(\frac { 1 }{ 2 }\) ∠BAC. इति सिद्धम्

MP Board Solutions

प्रश्न 4.
एक तिर्यक रेखा दो समान्तर रेखाओं को प्रतिच्छेद करती है। सिद्ध कीजिए कि इस प्रकार बने संगत कोणों के युग्म के समद्विभाजक समान्तर होते हैं।
हल:
ज्ञात है : एक तिर्यक रेखा l, दो समानान्तर रेखाओं m एवं n को क्रमशः A एवं B बिन्दुओं पर प्रतिच्छेद करती हैं, संगत कोण ∠lAm एवं ∠ABn के समद्विभाजक क्रमश: Ap एवं Bq हैं तो सिद्ध करना है कि Ap || Bq.
MP Board Class 9th Maths Solutions Chapter 6 रेखाएँ और कोण Ex 6.3 14
चित्र 6.39
उपपत्ति : चूँकि p एवं q क्रमशः कोण ∠lAm एवं ∠ABn के समद्विभाजक हैं।
⇒ ∠lAp = ∠pAm
एवं ∠ABq = ∠qBn
⇒ ∠lAp = \(\frac { 1 }{ 2 }\)∠lam एवं ∠ABq = \(\frac { 1 }{ 2 }\)∠ABn …(1)
चूँकि m|| n को तिर्यक रेखा l प्रतिच्छेद करती है
⇒ ∠lAm = ∠ABn ….(2)
⇒ ∠lAp = ∠ABq [समीकरण (1) एवं (2) से]
लेकिन ∠lAp एवं ∠ABq संमत कोण हैं।
अतः Ap || Bq. इति सिद्धम्

MP Board Class 9th Maths Chapter 6 लघु उत्तरीय प्रश्न

प्रश्न 1.
संलग्न चित्र में OD कोण ∠AOC का समद्विभाजक है, OE कोण ∠BOC का समद्विभाजक है तथा OD 1 OE। दर्शाइए कि AOB संरेख हैं।
MP Board Class 9th Maths Solutions Chapter 6 रेखाएँ और कोण Ex 6.3 15
चित्र 6.40
हल:
चूँकि OD कोण AOC एवं OE कोण BOC के समद्विभाजक हैं।
⇒ ∠AOD = ∠DOC
एवं ∠BOE = ∠EOC.
⇒ ∠AOD + ∠BOE = ∠DOC + ∠EOC = ∠DOE = 90° [चूँकि OD ⊥ OE (दिया है)]
= ∠AOD + ∠BOE + ∠DOC + ∠EOC = 180°
चूँकि बिन्दु O पर किरण OA एवं OB के एक ही ओर बने कोण का योग 180° है।
इसलिए OA एवं OB एक सरल रेखा में हैं।
अतः AOB संरेख हैं। इति सिद्धम्

प्रश्न 2.
संलग्न चित्र में ∠1 = 60° और ∠6 = 120° हैं। दर्शाइए m और n समान्तर है।
MP Board Class 9th Maths Solutions Chapter 6 रेखाएँ और कोण Ex 6.3 16
चित्र 6.41
हल:
∠1 + ∠4 = 180° (∵ एक रेखा के एक बिन्दु पर एक ओर बने कोण हैं)
⇒ ∠4 = 180° – ∠1 .
= 180° + 60°= 120°
⇒ ∠6 = 24 = 120° [क्योंकि ∠6 = 120° (दिया गया है)]
लेकिन ये एकान्तर कोण है।
अतः m || n. इति सिद्धम् ।

प्रश्न 3.
संलग्न चित्र में AP और BQ उन दो एकान्तर अन्तःकोणों के समद्विभाजक हैं जो समान्तर रेखाओं l और m के तिर्यक रेखा t द्वारा प्रतिच्छेद से बनते हैं। दर्शाइए कि AP || BQ.
MP Board Class 9th Maths Solutions Chapter 6 रेखाएँ और कोण Ex 6.3 17
चित्र 6.42
हल:
चूँकि l || m को तिर्यक रेखा t बिन्दु A और B पर प्रतिच्छेद करती है। (दिया है)
⇒ ∠lAB = ∠ABm (एकान्तर कोण हैं) …(1)
चूँकि AP एवं BQ क्रमशः ∠lAB एवं ABm के समद्विभाजक हैं (दिया है)
⇒ ∠PAB = \(\frac { 1 }{ 2 }\)∠lAB एवं ∠ABQ = \(\frac { 1 }{ 2 }\)∠ABm …(2)
⇒ ∠PAB = ∠ABQ [समीकरण (1) एवं (2) से]
लेकिन ये एकान्तर कोण हैं
अतः AP || BQ. इति सिद्धम्

प्रश्न 4.
संलग्न चित्र में DE || QR तथा AP और BP क्रमशः कोण ∠EAB और ∠RBA की समद्विभाजक हैं। ∠APB ज्ञात कीजिए।
MP Board Class 9th Maths Solutions Chapter 6 रेखाएँ और कोण Ex 6.3 18
चित्र 6.43
हल:
चूँकि DE || QR को तिर्यक रेखा n क्रमशः बिन्दु A एवं B पर प्रतिच्छेद करती हैं।
⇒ ∠EAB + ∠ABR = 180° …(1) (एक ही ओर के अन्तः कोण हैं)
चूँकि AP एवं BP क्रमशः कोण EAB एवं ABR के समद्विभाजक हैं।
⇒ ∠PAB = \(\frac { 1 }{ 2 }\)∠EAB एवं ∠PBA = \(\frac { 1 }{ 2 }\)∠ABR
⇒ ∠PAB + ∠PBA = \(\frac { 1 }{ 2 }\) (∠EAB + ∠ABR) ….(2)
⇒ ∠PAB + ∠PBA = 90° [समीकरण (1) एवं (2) से] …(3)
⇒ ∠PAB + ∠PBA + ∠APB = 180° [त्रिभुज के अन्तःकोण हैं] …(4)
⇒ 90° + ∠APB = 180° [समीकरण (3) एवं (4) से)]
⇒∠APB = 180° – 90° = 90°
अतः ∠APB का अभीष्ट मान = 90°.

MP Board Solutions

प्रश्न 5.
किसी त्रिभुज के कोणों का अनुपात 2 : 3 : 4 है। त्रिभुज के तीनों कोण ज्ञात कीजिए।
हल:
कोणों के अनुपात का योग = 2 + 3 + 4 = 9, कोणों के मानों का योग = 180° (हम जानते हैं)
MP Board Class 9th Maths Solutions Chapter 6 रेखाएँ और कोण Ex 6.3 19
अतः त्रिभुज के तीनों कोणों से अभीष्ट मान क्रमशः 40°, 60° एवं 80° हैं।

MP Board Class 9th Maths Chapter 6 अति लघु उत्तरीय प्रश्न

प्रश्न 1.
संलग्न चित्र में x + y के किस मान के लिए ABC एक रेखा होगी ? अपने उत्तर का औचित्य दीजिए।
MP Board Class 9th Maths Solutions Chapter 6 रेखाएँ और कोण Ex 6.3 20
चित्र 6.44
उत्तर:
x + y = 180°, क्योंकि ABC को एक रेखा होने के लिए दोनों कोणों का योग 180° होना चाहिए।

प्रश्न 2.
क्या किसी त्रिभुज के सभी कोण 60° से कम हो सकते हैं ? अपने उत्तर के लिए कारण दीजिए। (2019)
उत्तर:
नहीं हो सकते, क्योंकि त्रिभुजों के तीनों कोणों का योग 180° होता है। उक्त स्थिति में कोणों का योग 180° से कम होगा।

प्रश्न 3.
क्या किसी त्रिभुज के दो अधिककोण हो सकते हैं ? अपने उत्तर के लिए कारण दीजिए।
उत्तर:
नहीं हो सकते, क्योंकि उक्त स्थिति में त्रिभुज के तीनों कोणों का योग 180° से अधिक होगा जबकि त्रिभुज के तीनों कोणों का योग 180° होता है।

प्रश्न 4.
कोणों 45°, 64° और 72° वाले कितने त्रिभुज खींचे जा सकते हैं ? अपने उत्तर के लिए कारण दीजिए।
उत्तर:
कोई भी त्रिभुज नहीं खींचा जा सकता, क्योंकि उक्त स्थिति में तीनों कोणों का योग 45° + 64° + 72° = 181° हो जाता है जो 180° से अधिक है।

प्रश्न 5.
कोणों 53°, 64° और 63° वाले कितने त्रिभुज खींचे जा सकते हैं ? अपने उत्तर के लिए कारण दीजिए।
उत्तर:
अपरिमित रूप से अनेक त्रिभुज खींचे जा सकते हैं, क्योंकि प्रत्येक दशा में कोणों का योग 53° + 64° + 63° = 180 होता है।

प्रश्न 6.
संलग्न चित्र में x का मान ज्ञात कीजिए जिसके लिए l और m समान्तर होंगे।
MP Board Class 9th Maths Solutions Chapter 6 रेखाएँ और कोण Ex 6.3 21
चित्र 6.45
हल:
x + 44° = 180°
⇒ x = 180° – 44° = 136°
अतः x का अभीष्ट मान = 136°.

प्रश्न 7.
दो आसन्न कोण बराबर है। क्या यह आवश्यक है कि वे दोनों कोण समकोण हों ? अपने
उत्तर:
का औचित्य दीजिए। उत्तर- कोई आवश्यक नहीं, क्योंकि यह तभी सम्भव है जब ये रेखायुग्म बनाएँ।

प्रश्न 8.
यदि दो प्रतिच्छेदी रेखाओं से बना एक कोण समकोण है, तो अन्य तीनों कोणों के बारे में आप क्या कह सकते हैं ? अपने उत्तर का कारण दीजिए।
उत्तर:
अन्य तीनों कोण भी समकोण होंगे, रैखिक युग्म अभिगृहीत के कारण।

प्रश्न 9.
निम्न चित्र में कौन-सी दो रेखाएँ समान्तर हैं और क्यों?
MP Board Class 9th Maths Solutions Chapter 6 रेखाएँ और कोण Ex 6.3 22
चित्र 6.46
उत्तर:
रेखाएँ l || m क्योंकि एक ही ओर के अन्तः कोणों का योग = 132° + 48° = 180°
रेखाएँ p एवं q समान्तर नहीं है, क्योंकि एक ही ओर के अन्तः कोणों का योग = 73° + 106° = 179° + 180°

प्रश्न 10.
दो रेखाएँ l और m एक ही रेखा n पर लम्ब हैं। क्या l और m परस्पर लम्ब हैं ? अपने उत्तर के लिए कारण दीजिए।
उत्तर:
नहीं, क्योंकि ये समान्तर हैं।

MP Board Solutions

MP Board Class 9th Maths Chapter 6 वस्तुनिष्ठ प्रश्न

बहु-विकल्पीय प्रश्न

प्रश्न 1.
यदि किसी त्रिभुज का एक कोण अन्य दो कोणों के योग के बराबर हो, तो वह त्रिभुज है एक :
(a) समद्विबाहु त्रिभुज
(b) अधिक कोण त्रिभुज
(c) समबाहु त्रिभुज
(d) समकोण त्रिभुज।
उत्तर:
(d) समकोण त्रिभुज

प्रश्न 2.
एक त्रिभुज का एक बहिष्कोण 105° है तथा उसके दोनों अन्तः विपरीत कोण बराबर हैं। इनमें से प्रत्येक बराबर कोण है :
(a) 37 \(\frac { 1 }{ 2 }\) °
(b) 27 \(\frac { 1 }{ 2 }\)°
(c) 72 \(\frac { 1 }{ 2 }\) °
(d) 75°.
उत्तर:
(b) 27 \(\frac { 1 }{ 2 }\)°

प्रश्न 3.
किसी त्रिभुज के कोणों का अनुपात 5 : 3 : 7 है। वह त्रिभुज है एक :
(a) न्यूनकोण त्रिभुज
(b) अधिक कोण त्रिभुज
(c) समकोण त्रिभुज
(d) समद्विबाहु त्रिभुज।
उत्तर:
(a) न्यूनकोण त्रिभुज

प्रश्न 4.
किसी त्रिभुज का एक कोण 130° है तो अन्य दोनों कोणों के समद्विभाजकों के बीच कोण हो सकता है:
(a) 50°
(b) 65°
(c) 145°
(d) 155°
उत्तर:
(d) 155°

प्रश्न 5.
संलग्न चित्र में POQ एक रेखा है। x का मान है :
MP Board Class 9th Maths Solutions Chapter 6 रेखाएँ और कोण Ex 6.3 23
चित्र 6.47
(a) 20°
(b) 25°
(c) 30°
(d) 35°.
उत्तर:
(a) 20°

प्रश्न 6.
एक त्रिभुज के कोण 2 : 4 : 3 के अनुपात में हैं। त्रिभुज का सबसे छोटा कोण है :
(a) 60°
(b) 40°
(c) 80°
(d) 20°.
उत्तर:
(b) 40°

रिक्त स्थानों की पूर्ति
1. सरल रेखा का वह भाग जिसके दो अन्त बिन्दु हों, ………… कहलाता है।
2. यदि तीन या अधिक बिन्दु एक ही सरल रेखा में हों, तो वे बिन्दु ……. कहलाते हैं।
3. सरल रेखा का वह भाग जिसका एक बिन्दु हो ……… कहलाता है।
4. जब दो किरण एक ही अन्त बिन्दु से आरम्भ होती हैं तो एक ………. बनता है।
5. कोण बनाने वाली दोनों किरणें ………. कहलाती हैं।
6. यदि दो आसन्न कोणों का योग ……… हो, तब वे रैखिक युग्म बनाते हैं। (2019)
उत्तर:
1. रेखाखण्ड,
2. सरेख बिन्दु,
3. किरण,
4. कोण,
5. उस कोण की भुजाएँ,
6. 180°.

जोड़ी मिलान

MP Board Class 9th Maths Solutions Chapter 6 रेखाएँ और कोण Ex 6.3 24

उत्तर:
1. → (c),
2. → (d),
3. → (e),
4. → (a),
5. → (b),
6. → (g),
7. → (1).

सत्य/असत्य कथन
1. कोटि पूरक कोणों का योग 180° होता है।
2. किसी त्रिभुज में कम-से-कम दो न्यूनकोण होते हैं।
3. सम्पूरक कोणों का योग 90° होता है।
4. किसी त्रिभुज में दो समकोण नहीं हो सकते।
5. जब दो असमान्तर रेखाओं को एक तिर्यक रेखा प्रतिच्छेद करे तो एकान्तर कोण बराबर होते हैं।
उत्तर:
1. असत्य,
2. सत्य,
3. असत्य,
4. सत्य,
5. असत्य।

एक शब्द/वाक्य में उत्तर
1. त्रिभुजों के तीनों अन्तः कोणों का योग कितना होता है?
2. समबाहु त्रिभुज के प्रत्येक कोण का माप क्या होता है?
3. दो समान्तर रेखाओं को एक तिर्यक रेखा प्रतिच्छेद करे तो एक ही ओर के दो अन्त: कोणों का योग कितना होता है?
4. दो रेखाएँ प्रतिच्छेद करती हैं तो शीर्षाभिमुख कोणों में क्या सम्बन्ध होता है? 5. समकोण समद्विबाहु त्रिभुज के न्यूनकोण का माप क्या होगा?
उत्तर:
1. 180°,
2. 60°,
3. 180°,
4. बराबर होते हैं,
5. 45°.

MP Board Class 9th Maths Solutions

MP Board Class 9th Maths Solutions Chapter 5 युक्लिड के ज्यामिति का परिचय Additional Questions

MP Board Class 9th Maths Solutions Chapter 5 युक्लिड के ज्यामिति का परिचय Additional Questions

MP Board Class 9th Maths Chapter 5 अतिरिक्त परीक्षोपयोगी प्रश्न

MP Board Class 9th Maths Chapter 5 दीर्घ उत्तरीय प्रश्न

प्रश्न 1. निम्नलिखित कथन को पढ़िए :
“एक समबाहु त्रिभुज तीन रेखाखण्डों से बना एक बहुभुज है जिनमें से दो रेखाखण्ड तीसरे रेखाखण्ड के बराबर हैं तथा इसका प्रत्येक कोण 60° का है।” इस परिभाषा में उन पदों को परिभाषित कीजिए जिन्हें आप आवश्यक समझते हैं। क्या इसमें कोई अपरिभाषित पद है ? क्या आप इसका औचित्य दे सकते हैं कि एक समबाहु त्रिभुज के सभी कोण और सभी भुजाएँ बराबर होती हैं। उत्तर:
परिभाषित किए जाने वाले पद :
बहुभुज : तीन या तीन से अधिक रेखाखण्डों से बनी एक सरल बन्द आकृति।
रेखाखण्ड : रेखा का वह भाग जिसके दो अन्त-बिन्दु हों।
रेखा : अपरिभाषित पद।
बिन्दु : अपरिभाषित पद।
कोण : उभयनिष्ठ शीर्ष वाली दो किरणों से बनी आकृति।
किरण : रेखा का वह भाग जिसका एक अन्त-बिन्दु हो।
त्रिभुज : तीन रेखाखण्डों से निर्मित एक सरल बन्द आकृति।
अपरिभाषित पद : रेखा एवं बिन्दु।। त्रिभुज का प्रत्येक कोण का माप 60° है (दिया है)
अतः समबाहु त्रिभुज के सभी कोण बराबर हैं। दो रेखाखण्ड तीसरे रेखाखण्ड के बराबर है (दिया है)।
अतः समबाहु त्रिभुज की तीनों भुजाएँ बराबर होंगी। (यूक्लिड की प्रथम अभिगृहीत से “वे वस्तुएँ जो एक ही वस्तु के बराबर हों, परस्पर बराबर होती हैं।”)

MP Board Class 9th Maths Chapter 5 लघु उत्तरीय प्रश्न

प्रश्न 1.
दो सेल्समेनों ने अगस्त महीने में बराबर बिक्री की। सितम्बर में प्रत्येक सेल्समेन अपनी बिक्री अगस्त के महीने की बिक्री की दो गुनी कर लेता है। दोनों की सितम्बर की बिक्रियों की तुलना
कीजिए।
उत्तर:
चूँकि अगस्त में दोनों सेल्समेनों की बिक्री बराबर है। सितम्बर में दोनों की बिक्री अगस्त की बिक्री की दो गुनी है।
अत: दोनों की सितम्बर की बिक्री भी बराबर होगी, क्योंकि बराबर का दो गुना बराबर होता है। (अभिगृहीत-6 के अनसार।)

प्रश्न 2.
यह ज्ञात है कि x + y = 10 और x = है। दर्शाइए कि x + y = 10 है।
हल:
चूंकि y = y (अभिगृहीत – 4 से)
एवं x = z (दिया है)
⇒ x + y = z + y
(अभिगृहीत – 2 से)
एवं x + y = 10 (दिया है)
अतः z + y = 10. (अभिगृहीत-1 से) इति सिद्धम्

प्रश्न 3.
संलग्न चित्र को देखिए। दर्शाइए :
AH > AB + BC + CD है।
MP Board Class 9th Maths Solutions Chapter 5 युक्लिड के ज्यामिति का परिचय Ex 5.2 3
हल :
चित्रानुसार,
AB+ BC + CD, AH का एक भाग है
अतः AH > AB + BC + CD. (अभिगृहीत – 5)
अर्थात् पूर्ण अपने भाग से बड़ा होता है।
MP Board Solutions

प्रश्न 4.
संलग्न चित्र में AB = BC एवं BX = BY दर्शाइए कि AX = CY है।
हल:
MP Board Class 9th Maths Solutions Chapter 5 युक्लिड के ज्यामिति का परिचय Ex 5.2 4
∵AB = BC (दिया है)
∵ BX = BY (दिया है)
AB – BX = BC – BY (अभिगृहीत – 3)
लेकिन AB – BX = AX
एवं BC – BY = CY (चित्रानुसार)
अतः Ax = CY.  इति सिद्धम्

प्रश्न 5.
संलग्न चित्र में AC = DC और CB = CE है। दर्शाइए कि AB = DE है।
MP Board Class 9th Maths Solutions Chapter 5 युक्लिड के ज्यामिति का परिचय Ex 5.2 5
हल:
AC = DC (दिया है)
एवं CB = CE (दिया है)
AC + CB = DC + CE (अभिगृहीत – 2)
लेकिन AC + CB = AB
एवं DC + CE = DE (चित्रानुसार)
अतः AB = DE. इति सिद्धम्
MP Board Solutions

MP Board Class 9th Maths Chapter 5 अति लघु उत्तरीय प्रश्न

निम्न कथन सत्य हैं या असत्य लिखिए। अपने उत्तर का औचित्य दीजिए :

प्रश्न 1.
यूक्लिडीय ज्यामिति केवल वक्र पृष्ठों के लिए ही मान्य है।
उत्तर:
असत्य कथन। यह केवल तल में बनी आकृतियों के लिए ही मान्य है।

प्रश्न 2.
ठोसों की परिसीमाएँ वक्र होती हैं।
उत्तर:
असत्य कथन। ठोसों की परिसीमाएँ पृष्ठ होते हैं।

प्रश्न 3.
एक पृष्ठ के किनारे वक्र होते हैं।
उत्तर:
असत्य कथन। पृष्ठों के किनारे रेखाएँ होती हैं।

प्रश्न 4.
वस्तुएँ जो एक ही वस्तु की दो गुनी हों बराबर होती हैं।
उत्तर:
सत्य कथन। यह यूक्लिड का एक अभिगृहीत है।

प्रश्न 5.
यदि एक राशि B एक अन्य राशि A का एक भाग है, तो A को B और एक अन्य राशि C के रूप में लिखा जा सकता है।
उत्तर:
सत्य कथन। यूक्लिड के एक अभिगृहीत के कारण।

प्रश्न 6.
वे कथन जिन्हें सिद्ध किया जा सकता है, अभिगृहीत कहलाते हैं।
उत्तर:
असत्य कथन। सिद्ध किए गए कथन प्रमेय कहलाते हैं।

प्रश्न 7.
कथन प्रत्यके रेखा l और उस पर न स्थित प्रत्येक बिन्दु P के लिए एक अद्वितीय रेखा का अस्तित्व है जो P से होकर जाती है और l के समान्तर है, प्लेफेयर अभिगृहीत कहलाता है।
उत्तर:
सत्य कथन। यह यूक्लिड की पाँचवीं अभिधारणा का एक रूपान्तरण है।

प्रश्न 8.
दो भिन्न प्रतिच्छेदी रेखाएँ एक ही रेखा के समान्तर नहीं हो सकती।
उत्तर:
सत्य कथन। यह यूक्लिड की पाँचवीं अभिधारणा का एक रूपान्तरण है।

प्रश्न 9.
यूक्लिड की पाँचवीं अभिधारणा को अन्य अभिधारणाओं और अभिगृहीतों का प्रयोग करते हुए सिद्ध करने के प्रयासों के फलस्वरूप अन्य अनेक ज्यामितियों की खोज हुई।
उत्तर:
सत्य कथन। ये ज्यामितियाँ यूक्लिडीय ज्यामिति से भिन्न है।
MP Board Solutions

MP Board Class 9th Maths Chapter 5 वस्तुनिष्ठ प्रश्न

बहु-विकल्पीय प्रश्न

प्रश्न 1.
प्राचीन भारत में, आयतों, त्रिभुजों और समलम्बों से समायोजित आकारों की वेदियाँ निम्नलिखित में प्रयोग होती थीं:
(a) सार्वजनिक पूजास्थल
(b) घरेलू पूजास्थल
(c) A और B दोनों
(d) इनमें से कोई नहीं।
उत्तर:
(a) सार्वजनिक पूजास्थल

प्रश्न 2.
प्राचीन भारत में घरेलू पूजा कार्य में प्रयोग की जाने वाली वेदियों के आकार होते थे :
(a) वर्ग और वृत्त
(b) त्रिभुज और आयत
(c) समलम्ब और पिरामिड
(d) आयत और वर्ग।
उत्तर:
(a) वर्ग और वृत्त

प्रश्न 3.
अथर्ववेद में दिए गए ‘श्री यन्त्र’ में एक-दूसरे के साथ जुड़े अन्तर्निहित समद्विबाहु त्रिभुजों की संख्या है:
(a) सात
(b) आठ
(c) नौ
(d) ग्यारह।
उत्तर:
(c) नौ

प्रश्न 4.
यूनानियों ने निम्नलिखित पर बल दिया :
(a) आगमन, तर्कण
(b) निगमन, तर्कण
(c) A और B
(d) ज्यामिति का व्यावहारिक प्रयोग।
उत्तर:
(b) निगमन, तर्कण

प्रश्न 5.
यूक्लिड निम्नलिखित देश का वासी था :
(a) बेबीलोनिया
(b) मिस्र
(c) यूनान
(d) भारत।
उत्तर:
(c) यूनान

प्रश्न 6.
थेल्स निम्नलिखित देश का वासी था :
(a) बेबीलोनिया
(b) मिस्र
(c) यूनान
(d) रोम।
उत्तर:
(c) यूनान

प्रश्न 7.
पाइथागोरस एक विद्यार्थी था :
(a) थेल्स का
(b) यूक्लिड का
(c) (a) और (b) दोनों का
(d) आर्कमिडीज का।
उत्तर:
(a) थेल्स का

प्रश्न 8.
निम्नलिखित में से किसकी उपपत्ति की आवश्यकता है :
(a) प्रमेय
(b) अभिगृहीत
(c) परिभाषा
(d) अभिधारणा।
उत्तर:
(a) प्रमेय

प्रश्न 9.
यूक्लिड के कथन सभी समकोण एक दूसरे के बराबर होते हैं निम्न के रूप में दिया गया है :
(a) अभिगृहीत
(b) परिभाषा
(c) अभिधारणा
(d) उपपत्ति।
उत्तर:
(c) अभिधारणा

प्रश्न 10.
“रेखाएँ समान्तर होती हैं, यदि वे प्रतिच्छेद नहीं करतीं” का कथन निम्न रूप में दिया गया है:
(a) अभिगृहीत
(b) परिभाषा
(c) अभिधारणा
(d) उपपत्ति।
उत्तर:
(b) परिभाषा

रिक्त स्थानों की पूर्ति

1. पिरामिड का आधार …….. होता है।
2. पिरामिड के पार्श्व फलक ……… होते हैं।
3. कोणों की परिसीमाएँ ……….. होती हैं।
4. पृष्ठों की परिसीमाएँ …….होती हैं।
5. सिन्धु घाटी की सभ्यता में निर्माण हेतु प्रयुक्त ईंटों की विमाओं में ……… का अनुपात था।
6. ………….. अपने भाग से बड़ा होता है। (2019)
उत्तर:
1. कोई भी बहुभुज,
2. त्रिभुजाकार,
3. पृष्ठ,
4. वक्र,
5. 4 : 2 : 1,
6. पूर्ण।

जोड़ी मिलान
स्तम्भ ‘A’                                               स्तम्भ ‘B’
1. एक ठोस की विमाओं की संख्या          (a) 13
2. एक पृष्ठ की विमाओं की संख्या           (b) 465
3. एक बिन्दु की विमाओं की संख्या         (c) 3
4. एलीमेण्ट्स में अध्यायों की संख्या        (d) 2
5. एलीमेण्ट्स में साध्यों की संख्या           (e) 0
उत्तर:
1. → (c),
2. → (d),
3. → (e),
4. → (a),
5. → (b).

सत्य/असत्य कथन

1. पिरामिड एक ठोस है जिसका आधार सदैव एक समबाहु त्रिभुज होता है।
2. ज्यामिति में हम बिन्दु, रेखा और तल को अपरिभाषित पद मानते हैं।
3. यूक्लिड की चौथी अभिगृहीत “प्रत्येक वस्तु स्वयं के बराबर होती है।”
4. यूक्लिड की ज्यामिति केवल तल में स्थित आकृतियों के लिए मान्य है।
5. बराबर वस्तुओं में समान वस्तु जोड़ने पर योग बराबर नहीं होता।
उत्तर:
1. असत्य,
2. सत्य,
3. सत्य,
4. सत्य,
5. असत्य।
MP Board Solutions

एक शब्द/वाक्य में उत्तर

1. एक बिन्दु से होकर कितनी सरल रेखाएँ खींची जा सकती हैं? (2019)
2. दो बिन्दुओं के बीच कितनी सरल रेखाएँ खींची जा सकती हैं?
3. “पूर्ण अपने भाग से बड़ा होता है” कौन-सी अभिगृहीत है?
4. “सभी समकोण एक-दूसरे के बराबर होते हैं” कौन-सी अभिधारणा है?
5. जो वस्तुएँ एक ही वस्तु के बराबर हों उनमें क्या सम्बन्ध होता है?
6. यूक्लिड की एक अवधारणा लिखिए। (2019)
उत्तर:
1. असंख्य,
2. एक,
3. पाँचवीं अभिगृहीत,
4. चौथी अभिधारणा,
5. बराबर होती हैं,
6. एक बिन्दु से एक अन्य बिन्दु तक एक सीधी रेखा खींची जा सकती है।

MP Board Class 9th Maths Solutions

MP Board Class 9th Maths Solutions Chapter 3 निर्देशांक ज्यामिति Additional Questions

MP Board Class 9th Maths Solutions Chapter 3 निर्देशांक ज्यामिति Additional Questions

MP Board Class 9th Maths Chapter 3 अतिरिक्त परीक्षोपयोगी प्रश्न

MP Board Class 9th Maths Chapter 3 दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
बिन्दु 4(5, 3), B(-2, 3) और D(5, -4) एक वर्ग ABCD के तीन शीर्ष हैं। एक आलेख कागज पर इन बिन्दुओं को आलेखित कीजिए और फिर शीर्ष C के निर्देशांक ज्ञात कीजिए।
हल:
प्रश्नानुसार वर्ग ABCD का आलेख संलग्न चित्र में प्रदर्शित है। चूँकि वर्ग की भुजाएँ अक्षों के समानान्तर हैं। अतः बिन्दु C का भुज बिन्दु B के भुज के बराबर तथा कोटि बिन्दु D की कोटि के बराबर होगी।
MP Board Class 9th Maths Solutions Chapter 3 निर्देशांक ज्यामिति Ex 3.3 7
अतः वर्ग ABCD अभीष्ट आलेख है तथा बिन्दु C के अभीष्ट निर्देशांक (-2, -4) है।

प्रश्न 2.
उस आयत के शीर्षों के निर्देशांक लिखिए जिसकी लम्बाई और चौड़ाई क्रमशः 5 और 3 मात्रक है। एक शीर्ष मूल-बिन्दु पर स्थित है। लम्बी भुजा X-अक्ष पर स्थित है तथा इनमें से एक शीर्ष तीसरे चतुर्थांश में है।
हल:
प्रश्न के अनुसार, दिए गए आयत की स्थिति निर्देशांक तल पर ABCD में प्रदर्शित है जिसमें AD = BC = 5 मात्रक एवं AB = CD = 3 मात्रक है तथा बिन्दु C तृतीय चतुर्थांश में है।
MP Board Class 9th Maths Solutions Chapter 3 निर्देशांक ज्यामिति Ex 3.3 8
अतः शीर्षों के अभीष्ट निर्देशांक क्रमशः (0, 0), (0, -3), (-5, -3) एवं (-5, 0) हैं।
MP Board Solutions

प्रश्न 3.
बिन्दु P(1, 0), Q(4, 0) और S(1, 3) को आलेखित कीजिए। बिन्दु R के निर्देशांक ज्ञात कीजिए ताकि PORS एक वर्ग हो।
हल:
प्रश्नानुसार दिए गए वर्ग PORS का आलेख संलग्न चित्र में प्रदर्शित है। वर्ग की भुजाएँ अक्षों के समानान्तर हैं। इसलिए बिन्दु R का भुज बिन्दु ए के भुज के तथा कोटि बिन्दु S की कोटि के बराबर होगी।
MP Board Class 9th Maths Solutions Chapter 3 निर्देशांक ज्यामिति Ex 3.3 9
अतः वर्ग PORS अभीष्ट आलेख है तथा बिन्दु R के अभीष्ट निर्देशांक (4, 3) हैं।

प्रश्न 4.
एक आयत के तीन शीर्ष क्रमशः (3, 2), (-4, 2) और (-4,5) हैं। इन बिन्दुओं को आलेखित कीजिए और फिर आयत के चौथे बिन्दु के निर्देशांक ज्ञात कीजिए।
हल:
मान लीजिए कि एक आयत ABCD के तीन शीर्ष क्रमश: A(3, 2), B(-4, 2) और C(-4, 5) दिए गए हैं, तो A, B एवं C को आलेखित करना है तथा आयत के चौथे शीर्ष D के निर्देशांक ज्ञात करने हैं।
MP Board Class 9th Maths Solutions Chapter 3 निर्देशांक ज्यामिति Ex 3.3 10
संलग्न चित्र में दिए हुए शीर्षों के आलेख क्रमशः बिन्दुओं A, B और C से प्रदर्शित हैं।
चूँकि ABCD एक आयत है तथा इसकी भुजाएँ अक्षों के समानान्तर हैं, इसलिए बिन्दु D का भुज बिन्दु A के भुज के बराबर अर्थात् x = 3 होगा तथा बिन्दु D की कोटि बिन्दु C की कोटि के बराबर अर्थात् y = 5 होगी। अतः चौथे शीर्ष के अभीष्ट निर्देशांक (3, 5) हैं।

प्रश्न 5.
संलग्न आकृति में निम्नलिखित के उत्तर दीजिए-
(i) उन बिन्दुओं को लिखिए जिनका भुज 0 है।
(ii) उन बिन्दुओं को लिखिए जिनकी कोटि 0 (शून्य) है।
(iii) उन बिन्दुओं को लिखिए जिनकी भुज -5 है।
MP Board Class 9th Maths Solutions Chapter 3 निर्देशांक ज्यामिति Ex 3.3 11
उत्तर:
(i) शून्य (0) भुज वाले बिन्दु : A(0, 3) एवं L(0, -4)
(ii) शून्य (0) कोटि वाले बिन्दु : G(5, 0) एवं I(-2, 0)
(iii)-5 भुज वाले बिन्दु : D(-5, 1) एवं H(-5, – 3).

प्रश्न 6.
निम्न बिन्दु किस अक्ष या चतुर्थांश में स्थित हैं :
(3,0) (2019);
(0,5) (2019);
(-3,-5) (2019);
(-4, 5) (2019);
(7,0) (2019);
(5,3) (2019);
(3,-5) (2019);
(-3,0) (2019);
(0, 2) (2019);
(3,5) (2019);
(0,-5) (2019);
(-3, – 1) (2019).
उत्तर:
(3,0) X – अक्ष पर; (0, 5) Y – अक्ष पर।
(-3, -5) तृतीय चतुर्थांश में; (-4, 5) द्वितीय चतुर्थांश में।
(7,0) X-अक्ष पर; (5, 3) प्रथम चतुर्थांश में।
(3, -5) चतुर्थ चतुर्थांश में; (-3, 0) X-अक्ष पर।
(0, 2) Y-अक्ष पर; (3, 5) प्रथम चतुर्थांश में।
(0, -5) Y-अक्ष पर; (-3, – 1) तृतीय चतुर्थांश में।

प्रश्न 7.
निम्न बिन्दुओं को निर्देशांक-तल (ग्राफ) पर प्रदर्शित कीजिए :
(A) (2, 0) (2019);
(B) (0, 2) (2019);
(C) (2, 2) (2019);
(D) (-2, – 2) (2019);
(E) (1, 2) (2019);
(F) (-3, 5) (2019);
(G) (2, -4) (2019);
(H) (-1, -3) (2019);
उत्तर:
MP Board Class 9th Maths Solutions Chapter 3 निर्देशांक ज्यामिति Ex 3.3 12

प्रश्न 8.
निम्न ग्राफ में (निर्देशांक तल पर) अंकित बिन्दुओं के निर्देशांक ज्ञात कीजिए :
(i) बिन्दु A, B, C और D (2019)
(ii) बिन्दु E और F के। (2019)
MP Board Class 9th Maths Solutions Chapter 3 निर्देशांक ज्यामिति Ex 3.3 13
उत्तर:
(i) A (2,0), B (0, 2), C (-2, 0) और D (0, – 2)
(ii) E (1, 2) और F(-2,-3).
MP Board Solutions

MP Board Class 9th Maths Chapter 3 लघु उत्तरीय प्रश्न

प्रश्न 1.
बिना बिन्दुओं को आलेखित किए बताइए कि वे किस चतुर्थांश में स्थित होंगे यदि
(i) कोटि 5 है, और भुज-3 है।
(ii) भुज-5 है, और कोटि-3 है।
(iii) भुज-5 है, और कोटि 3 है।
(iv) कोटि 5 है, और भुज 3 है।
उत्तर:
(i) द्वितीय चतुर्थांश में
(ii) तृतीय चतुर्थांश में
(iii) द्वितीय चतुर्थांश में
(iv) प्रथम चतुर्थांश में।

प्रश्न 2.
किस चतुर्थांश अथवा किस अक्ष पर निम्नलिखित बिन्दु स्थित हैं ?
(-3, 5), (4, – 1), (3,0), (2, 2), (-3,-6).
उत्तर:
(i) बिन्दु (-3, 5) द्वितीय चतुर्थांश में स्थित है।
(ii) बिन्दु (4, – 1) चतुर्थ चतुर्थांश में स्थित है।
(iii) बिन्दु (3,0) X-अक्ष पर स्थित है।
(iv) बिन्दु (2, 2) प्रथम चतुर्थांश में स्थित है।
(v) बिन्दु (-3,-6) तृतीय चतुर्थांश में स्थित है।

प्रश्न 3.
निम्नलिखित बिन्दुओं में से कौन-कौन-से बिन्दु Y-अक्ष पर स्थित हैं।
A(1, 1), B(1,0), C(0, 1), D(0, 0), E(0, – 1), F(-1,0), G(0, 5), H(-7,0), I(3, 3).
उत्तर:
C(0, 1), D(0, 0), E(0, – 1), G(0, 5).

प्रश्न 4.
एक बिन्दु X-अक्ष पर Y-अक्ष से 7 मात्रक की दूरी पर स्थित है। उसके निर्देशांक क्या होंगे? यदि यह Y-अक्ष पर X-अक्ष से – 7 मात्रक की दूरी पर स्थित हो तो निर्देशांक क्या होंगे?
उत्तर:
प्रथम स्थिति में निर्देशांक : (7, 0)
द्वितीय स्थिति में निर्देशांक : (0, -7).

प्रश्न 5.
उस बिन्दु के निर्देशांक ज्ञात कीजिए जो
(i) X और Y दोनों अक्षों पर स्थित है।
(ii) जिसकी कोटि -4 है और जो Y-अक्ष पर स्थित है।
(ii) जिसका भुज 5 है और जो X-अक्ष पर स्थित है।
उत्तर:
(i) (0, 0), (ii) (0, -4), (iii) (5,0).
MP Board Solutions

MP Board Class 9th Maths Chapter 3 अति लघु उत्तरीय प्रश्न

प्रश्न 1.
निम्नलिखित कथन सत्य हैं या असत्य लिखिए। अपने उत्तर का औचित्य दीजिए-
(i) बिन्दु (3, 0) प्रथम चतुर्थांश में स्थित है।
(ii) बिन्दु (1,-1) और (-1, 1) एक ही चतुर्थांश में स्थित है।
(iii) उस बिन्दु के निर्देशांक, जिसकी कोटि -7 और भुज 1 है, (-1/2,1) होंगे।
(iv) उस बिन्दु के निर्देशांक (2,0) हैं जो Y-अक्ष पर X-अक्ष से 2 मात्रक की दूरी पर स्थित है।
(v) (-1, 7) द्वितीय चतुर्थांश में स्थित एक बिन्दु है।
उत्तर:
(i) असत्य है, क्योंकि शून्य कोटि वाला बिन्दु X-अक्ष पर होता है।
(ii) असत्य है, क्योंकि बिन्दु (1, -1) चतुर्थ चतुर्थांश में है तथा (-1, 1) द्वितीय चतुर्थांश में है।
(iii) असत्य है, क्योंकि एक बिन्दु के निर्देशांक में भुज पहले तथा कोटि बाद में आती है। अतः (1, \(\frac { -1 }{ 2 }\)) निर्देशांक (1,-5) होगा।
(iv) असत्य है, क्योंकि दिये बिन्दु के निर्देशांक (0, 2) होंगे।
(v) सत्य है, क्योंकि द्वितीय चतुर्थांश में भुज ऋणात्मक तथा कोटि धनात्मक होती है।

प्रश्न 2.
निर्देशांक (3, 5) में भुज तथा कोटि लिखिए। (2019)
उत्तर:
भुज = 3, कोटि = 5.

प्रश्न 3.
बिन्दु (4, 5) की X-अक्ष एवं Y-अक्ष से दूरियाँ लिखिए। (2019)
उत्तर:
X-अक्ष से दूरी = 5
एवं Y-अक्ष से दूरी = 4.
MP Board Solutions

MP Board Class 9th Maths Chapter 3 वस्तुनिष्ठ प्रश्न

बहु विकल्पीय प्रश्न

प्रश्न 1.
बिन्दु (-3, 5) स्थित है :
(a) प्रथम चतुर्थांश में
(b) द्वितीय चतुर्थांश में
(c) तृतीय चतुर्थांश में
(d) चतुर्थ चतुर्थांश में।
उत्तर:
(b) द्वितीय चतुर्थांश में

प्रश्न 2.
Y-अक्ष पर स्थित सभी बिन्दुओं की भुज होती है :
(a) 0
(b) 1
(c) 2
(d) कोई भी संख्या।
उत्तर:
(a) 0

प्रश्न 3.
X-अक्ष पर स्थित सभी बिन्दुओं की कोटि होती है :
(a) 0
(b) 1
(c) -1
(d) कोई भी संख्या।
उत्तर:
(a) 0

प्रश्न 4.
बिन्दु (0, -7) स्थित है :
(a) X – अक्ष पर
(b) द्वितीय चतुर्थांश में
(c) Y – अक्ष पर
(d) चतुर्थ चतुर्थांश में।
उत्तर:
(c) Y – अक्ष पर

प्रश्न 5.
बिन्दु (-10,0) स्थित है :
(a) X – अक्ष की ऋणात्मक दिशा में
(b) Y – अक्ष की ऋणात्मक दिशा में
(c) तीसरे चतुर्थांश में
(d) चौथे चतुर्थांश में।
उत्तर:
(a) X – अक्ष की ऋणात्मक दिशा में
MP Board Solutions

प्रश्न 6.
वह बिन्दु जहाँ दोनों निर्देशांक अक्ष मिलते हैं, कहलाता है :
(a) भुज
(b) कोटि
(c) मूल-बिन्दु
(d) चतुर्थांश।
उत्तर:
(c) मूल-बिन्दु

प्रश्न 7.
वह बिन्दु जिसके दोनों निर्देशांक ऋणात्मक हैं स्थित होगा :
(a) प्रथम चतुर्थांश में
(b) द्वितीय चतुर्थांश में
(c) तृतीय चतुर्थांश में
(d) चतुर्थ चतुर्थांश में।
उत्तर:
(c) तृतीय चतुर्थांश में

प्रश्न 8.
किसी बिन्दु का भुज धनात्मक होता है वह स्थित होता है :
(a) चतुर्थांश I या II में
(b) चतुर्थांश I या IV में
(c) केवल चतुर्थांश IV में
(d) केवल चतुर्थांश II में।
उत्तर:
(b) चतुर्थांश I या IV में

प्रश्न 9.
वे बिन्दु जिनके भुज एवं कोटि विभिन्न चिह्नों के होते हैं, स्थित होंगे:
(a) चतुर्थांश I और II में
(b) चतुर्थांश II और III में
(c) चतुर्थांश I और III में
(d) चतुर्थांश II और IV में।
उत्तर:
(d) चतुर्थांश II और IV में

प्रश्न 10.
वह बिन्दु जिसकी कोटि 4 है और वह Y-अक्ष पर स्थित है, होगा :
(a) (4, 0)
(b) (0, 4)
(c) (1, 4)
(d) (4, 2).
उत्तर:
(b) (0, 4)

प्रश्न 11.
Y-अक्ष से बिन्दु P(3, 4) की लाम्बिक दूरी है :
(a) 3
(b) 4
(c) 5
(d) 7
उत्तर:
(a) 3

प्रश्न 12.
बिन्दु (-4, -4) किस चतुर्थांश में स्थित है : (2018)
(a) प्रथम
(b) द्वितीय
(c) तृतीय
(d) चतुर्थ।
उत्तर:
(c) तृतीय
MP Board Solutions

प्रश्न 13.
मूल-बिन्दु के निर्देशांक हैं : (2019)
(a) (2,0)
(b) (0, 2)
(c) (2, 2)
(d) (0,0)
उत्तर:
(d) (0,0)

प्रश्न 14.
मूल-बिन्दु के निर्देशांक हैं : (2019)
(a) (0, 1)
(b) (0, 0)
(c) (-1, 0)
(d) (1, 0)
उत्तर:
(b) (0, 0)

रिक्त स्थानों की पूर्ति

1. किसी बिन्दु की X-अक्ष से लम्बवत् दूरी उस बिन्दु का ………… निर्देशांक अथवा ………. कहलाता है।
2. किसी बिन्दु की Y-अक्ष से लम्बवत् दूरी उस बिन्दु का ……….. निर्देशांक अथवा ……. कहलाता है।
3. दोनों अक्षों के कटान बिन्दु को ………. कहते हैं।
4. X-अक्ष के समानान्तर रेखा के प्रत्येक बिन्दु की ………. समान होती है।
5. Y-अक्ष के समानान्तर रेखा के प्रत्येक बिन्दु की ……….. समान होती है।
6. (-1, -4) का चतुर्थांश ………. है।
7. बिन्दु (7, -6) की कोटि का मान ………. है। (2019)
उत्तर:
1. y, कोटि,
2. x, भुज,
3. मूलबिन्दु,
4. कोटि,
5. भुज,
6. तृतीय चतुर्थांश,
7. – 6.
MP Board Solutions

जोड़ी मिलान

स्तम्भ ‘A’                                                                   स्तम्भ ‘B’
1. बिन्दु (0, b) स्थित होगा                                    (a) x-निर्देशांक
2. बिन्दु (a, 0) स्थित होगा                                   (b) 5
3. मूल-बिन्दु के निर्देशांक (2019)                        (c) Y-अक्ष पर
4. प्रान्त (डोमेन)                                                (d) X-अक्ष पर
5. बिन्दु (3, 5) की X-अक्ष से दूरी (2019)              (e) (0, 0)
उत्तर:
1.→(c), 2.→(d), 3.→(e), 4.→(a), 5. →(b).

सत्य/असत्य कथन

1. X-अक्ष की कोटि सदैव शून्य होती है।
2. X-अक्ष से ऊपर की दूरियाँ ऋणात्मक तथा नीचे की धनात्मक होती हैं।
3. Y-अक्ष की भुज संदैव शून्य होती है।
4. Y-अक्ष के दायीं ओर की दूरियाँ ऋणात्मक तथा बायीं ओर की धनात्मक होती हैं।
5. मूल बिन्दु की भुज एवं कोटि दोनों शून्य होती हैं।
6. बिन्दु (-8, 0), X-अक्ष पर स्थित है।
7. बिन्दु (-2, -4), Y-अक्ष पर स्थित है।
8. बिन्दु (2, 2) प्रथम चतुर्थांश में स्थित है।
9. बिन्दु (0, 3) तृतीय चतुर्थांश में स्थित है। (2019)
10. मूल बिन्दु के निर्देशांक (0, 0) होते हैं। (2018)
उत्तर:
1. सत्य,
2. असत्य,
3. सत्य,
4. असत्य,
5. सत्य,
6. सत्य,
7. असत्य,
8. सत्य,
9. असत्य,
10. सत्य।
MP Board Solutions

एक शब्द/वाक्य में उत्तर

1. बिन्दु (8, -6) तथा (-5, 2) कौन-से चतुर्थांश में स्थित हैं ?
2. X-अक्ष पर स्थित किसी बिन्दु की कोटि कितनी होती है ?
3. Y-अक्ष पर स्थित किसी बिन्दु की भुज कितनी होती है ?
4. मूल-बिन्दु के निर्देशांक क्या होंगे ?
5. अक्षों का प्रतिच्छेदन बिन्दु क्या कहलाता है ?
उत्तर:
1. चतुर्थ एवं द्वितीय,
2. शून्य,
3. शून्य,
4. (0, 0),
5. मूल-बिन्दु।

MP Board Class 9th Maths Solutions

MP Board Class 9th Maths Solutions Chapter 2 बहुपद Additional Questions

MP Board Class 9th Maths Solutions Chapter 2 बहुपद Additional Questions

MP Board Class 9th Maths Chapter 2 अतिरिक्त परीक्षोपयोगी प्रश्न

MP Board Class 9th Maths Chapter 2 दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
यदि बहुपदों az3 + 4z3 + 3z – 4 और z3 – 4z + a को z – 3 से भाग देने पर प्रत्येक दशा में समान शेषफल प्राप्त होता है, तो a का मान ज्ञात कीजिए।
हल:
मान लीजिए p(E) = az3 + 4z3 + 3z – 4
तथा q(a) = z3 – 4z + a
∵ z – 3 दिए गए बहुपदों का भाजक है जिसका शून्यक 2 -3 = 0 ⇒ z = 3 है
तो शेषफल p(3) = a(3)3 + 4(3)2 + 3(3) – 4 = 27a + 36 + 9 – 4 = 27a + 41
एवं शेषफल q(3) = (3)3 – 4(3) + a = 27 – 12 + a = a + 15
चूँकि शेषफल p(3) = शेषफल q(3) (दिया हुआ है)
⇒ 27a + 41 = a + 15
⇒ 27a – a = 15 – 41
⇒ 26a = – 26
⇒ a = – 1
अतः a का अभीष्ट मान = -1.

प्रश्न 2.
यदि x – 2 और x – \(\frac { 1 }{ 2 }\) दोनों ही px2 + 5x +r के गुणनखण्ड हैं, तो दर्शाइए कि p = r है।
हल:
मान लीजिए कि बहुपद q(x) = px2 + 5x +r (दिया है)
चूँकि x – 2 दिए हुए बहुपद q(x) का एक गुणनखण्ड है।
इसलिए x – 2 = 0 अर्थात् x = 2 इसका एक शून्यक होगा।
⇒ q(2) = p(2)3 + 5(2) + r = 0 =
⇒ 4p + 10 + r = 0  …(i)
चूँकि x – \(\frac { 1 }{ 2 }\)  दिए हुए बहुपद q(x) का एक गुणनखण्ड है इसलिए x – \(\frac { 1 }{ 2 }\) = 0 अर्थात् x = \(\frac { 1 }{ 2 }\) इसका एक शून्यक होगा।
⇒\(q\left(\frac{1}{2}\right)=p\left(\frac{1}{2}\right)^{2}+5\left(\frac{1}{2}\right)+r=0\)
⇒  1/4 p + 5/2  + r = 0
⇒  p+ 10 + 4r = 0 ….(ii)
⇒ 3p – 3r = 0  समी. (1) – समी. (2) से]
⇒ 3p  = 3r
⇒ p = r

प्रश्न 3.
बिना वास्तविक विभाजन के सिद्ध कीजिए कि x2 – 3x + 2 से 2x4 – 5x3 + 2x2 – x + 2 विभाज्य है।
हल :
x2 – 3x + 2  = x2 – x – 2x + 2
=x (x – 1)- 2 (x – 1)
= (x – 1) (x – 2)
अतः (x – 1) एवं (x – 2) दोनों बहुपद x2 – 3x + 2 के शून्यक हैं।
माना दिया हुआ बहुपद p(x) = 2x4 – 5x3 + 2x2 – x + 2 है
p(1) = 2(1)4 – 5(1)3 + 2(1)2 – (1) + 2
p(1) = 2 – 5 + 2 – 1 + 2 = 6 – 6 = 0 है
इसलिए दिया हुआ बहुपद (x – 1) से विभाज्य है।
अब  p(2) = 2(2)4 – 5(2)3 + 2(2)2 – (2) +2
= 2(16) – 5(8) + 2(4) –  2 + 2
= 32 – 40 + 8 – 2 + 2 = 42 – 42 = 0 है
इसलिए दिया हुआ बहुपद (x – 2) से भी विभाज्य है।
अर्थात् दिया हुआ बहुपद (x – 1) (x – 2) अर्थात् (x2  – 3x + 2) से विभाज्य है;
अतः (x2 – 3x + 2) से बहुपद (2x4 – 5x2 + 2x2 + 2) विभाज्य है। इति सिद्धम्
MP Board Solutions

प्रश्न 4.
3x2 + x – 1 को x + 1 से भाग दीजिए एवं भागफल, शेषफल लिखिए। (2019)
हल:
MP Board Class 9th Maths Solutions Chapter 2 बहुपद Ex 2.5 7
अतः अभीष्ट भागफल = 3x – 2 एवं शेषफल = 1.

MP Board Class 9th Maths Chapter 2 लघु उत्तरीय प्रश्न

प्रश्न 1.
निम्नलिखित बहुपदों को एक पद वाले, दो पद वाले, इत्यादि बहुपदों में वर्गीकृत कीजिए :
(i) x2 + x + 1,
(ii) y3 – 5y,
(iii) xy + yz + zx,
(iv) x2 – 2xy + y2 + 1.
उत्तर:
(i) त्रिपद,
(ii) द्विपद,
(iii) त्रिपद,
(iv) चतुर्पद।

प्रश्न 2.
निम्नलिखित बहुपदों में से प्रत्येक की घात निर्धारित कीजिए :
(i) 2x – 1,
(ii) -10,
(iii) x3 – 9x + 3x5,
(iv) y3 (1 – y4).
उत्तर:
(i) घात = 1,
(ii) घात = 0,
(iii) घात = 5.
(iv) घात = 7.

प्रश्न 3.
बहुपद \( \frac{x^{3}+2 x+1}{5}-\frac{7}{2} x^{2}-x^{6}\) के लिए, लिखिए :
(i) बहुपद की घात
(ii) x3 का गुणांक
(iii) x6 का गुणांक
(iv) अचर पद।
उत्तर:
(i) घात = 6,
(ii) x3 का गुणांक = \(\frac { 1 }{ 5 }\)
(iii) x6 का गुणांक = – 1,
(iv) अचर पद = \(\frac { 1 }{ 5 }\)
MP Board Solutions

प्रश्न 4.
निम्नलिखित में से प्रत्येक में x का गुणांक लिखिए :
(i) \(\frac{\pi}{6} x+x^{2}+1\)
(ii) 2x – 5
(ii) (x – 1) (3x – 4)
(iv) (2x – 5) (2x2 – 3x + 1).
उत्तर:
(i) x2 का अभीष्ट गुणांक = 1
(ii) x2 का अभीष्ट गुणांक = 0 (शून्य)
(iii) (x – 1) (3x – 4) = 3x2 – 7x + 4 में x2 का अभीष्ट गुणांक = 3
(iv) (2x – 5) (2x2 – 3x + 1) = 2x (2x2 – 3x + 1) – 5 (2x2 – 3x + 1)
= 4x3 – 6x2 + 2x – 10x2 + 15x -5
= 4x3 – 16x2 + 17x – 5 में x2 का गुणांक = – 16

प्रश्न 5.
निम्नलिखित को एक अचर रैखिक, द्विघात और त्रिघात बहुपदों के रूप में वर्गीकृत कीजिए:
(i) 2 – x2 +x3
(ii) 3x3
(iii) 5t – √7
(iv) 4 – 5y2
(v) 3
(vi) 2 + x
(vii) y3 – y
(viii) 1 + x + x2
(ix) t2
(x) √2x – 1.
उत्तर:
(i) त्रिघात,
(ii) त्रिघात,
(iii) रैखिक,
(iv) द्विघात,
(v) अचर,
(vi) रैखिक,
(vii) त्रिघात,
(viii) द्विघात,
(ix) द्विघात,
(x) रैखिक।

प्रश्न 6.
एक ऐसे बहुपद का उदाहरण दीजिए, जो :
(i) घात 1 का एकपदी है।
(ii) घात 20 का द्विपदी है।
(iii) घात 2 का एक त्रिपदी है।
उत्तर:
(i) ax, जहाँ a अचर है।
(ii) ar20 + b, जहाँ a एवं b अचर हैं।
(iii) ar2 + bx + c, जहाँ a, b एवं c अचर हैं।

प्रश्न 7.
निम्नलिखित के लिए p(0), p(1) और p(-2) ज्ञात कीजिए :
(i) p(x) = 10x – 4x2 – 3
(ii) p(y) = (y + 2) (y – 2).
हल:
(i) ∵ p(x) = 10x – 4x2 – 3
⇒ p(0) = 10(0) – 4(0)2 – 3 = 0 – 0 – 3 = – 3
तथा p(1) = 10(1) – 4(1)2 – 3 = 10 – 4 – 3 = 10 – 7 = +3
एवं  p(-2) = 10(-2) – 4(-2)2 – 3 = – 20 – 16 – 3 = – 39
अतः अभीष्ट मान p(0) = – 3, p(1) = + 3 एवं p(-2) = – 39.

(ii) ∵ p(y) = (y + 2) (y2 – 2) = y2 – 4
⇒ p(0) = (0)2 – 4 = 0-4 =-4
तथा p(1) = (1)2 – 4 = 1 – 4 = – 3
एवं p(-2) = (-2)2 – 4 = 4 – 4 = 0
अतः अभीष्ट मान p(0) = -4, p(1) = – 3 एवं p(-2) = 0.

प्रश्न 8.
जाँच कीजिए कि निम्नलिखित कथन सत्य हैं या असत्य :
(i) – 3 बहुपद x – 3 का एक शून्यक है।
(ii) -1/3 बहुपद 3x + 1 का एक शून्यक है।
(iii) -4/5 बहुपद 4 – 5y का एक शून्यक है।
(iv) 0 और 2 बहुपद t2 – 2t के शून्यक हैं।
(v) -3 बहुपद y2 + y – 6 का एक शून्यक है।
उत्तर:
(i) असत्य है, क्योंकि (-3) – 3 = – 6 ≠ 0
(ii) सत्य है, क्योंकि 3 (-\(\frac { 1 }{ 3 }\)) + 1 =- 1 + 1 = 0
(iii) असत्य है, क्योंकि 4 – 5(-\(\frac { 4 }{ 5 }\)) = 4 + 4 = 8 ≠ 0
(iv) सत्य है, क्योंकि (0)2 – 2(0) = 0 – 0 = 0 एवं (2)2 – 2(2) = 4 – 4 = 0.
(v) सत्य है, क्योंकि (-3)2 + (-3)- 6 = 9 – 3 – 6 = 9 – 9 = 0

प्रश्न 9.
निम्नलिखित में से प्रत्येक में बहुपद के शून्यक ज्ञात कीजिए : (2019)
(i) p(x) = x – 4
(ii) g(x) = 3 – 6x
(iii) q(x) = 2x – 7
(iv) h(y) = 2y.
हल:
(i) ∵ p(x) =x-4 = 0 ⇒ x = 4, अत: अभीष्ट शून्यक = 4.
(ii) g(x) = 3 – 6x = 0 ⇒ 6x = 3 ⇒  x= \(\frac { 3 }{ 6 }\)  = \(\frac { 1 }{ 2 }\) =, अतः अभीष्ट शून्यक =  \(\frac { 1 }{ 2 }\)
(ii) q(x) = 2x – 7 = 0 ⇒ 2x = 7 ⇒  x = \(\frac { 7 }{ 2 }\), अतः अभीष्ट शून्यक = \(\frac { 7 }{ 2 }\)
(iv) h(y) = 2y = 0 ⇒ y = \(\frac { 0 }{ 2 }\) = 0, अतः अभीष्ट शून्यक = 0.
MP Board Solutions

प्रश्न 10.
शेषफल प्रमेय से शेषफल ज्ञात कीजिए, जब p(x) को q(x) से भाग दिया जाता है, जहाँ
(i) p(x) = x3 – 2x2 – 4x – 1, q(x) = x + 1
(ii) p(x) =x3 – 3x2 + 4x + 50, q(x) = x – 3
(iii) p(x) = 4x3 – 12x2 + 14x – 3, q(x) = 2x -1
(iv) p(x) = x– 6x2 + 2x – 4, q(x) = 1 – \(\frac { 3 }{ 2 }\)x.
हल:
(i) चूँकि भाजक q(x) = x + 1 = 0 का शून्यक x = – 1 है
p(x) = x3 – 2x2 – 4x – 1,
⇒ शेषफल  p(- 1) = (-1)3 – 2(-1)2 – 4(-1)-1 (शेषफल प्रमेय से)
= (-1) – 2 (1) + 4 – 1
= -1 – 2 + 4 – 1 = 4 – 4 = 0
अतः अभीष्ट शेषफल = 0.

(ii) चूँकि भाजक q(x) =  x – 3 = 0 का शून्यक x = 3 है
और p(x) = x3 – 3x2 + 4x + 50
⇒ शेषफल p(3) = (3)3 – 3(3)2 + 4(3) + 50
= 27 – 27 + 12 + 50 = 62
अतः अभीष्ट शेषफल = 62.

(iii) चूँकि भाजक q(x) = 2x – 1 = 0 का शून्यक x = \(\frac { 1 }{ 2 }\) , है और
p(x) = 4x3 – 12x2 + 14x – 3
MP Board Class 9th Maths Solutions Chapter 2 बहुपद Ex 2.5 8

(iv) चूँकि भाजक q(x) = 1 – \(\frac { 3 }{ 2 }\)x = 0 का शून्यक = 2/3 है
और p(x) = x3 – 6x2 + 2x -4
⇒ शेषफल p (2/3) = (2/3)3 – 6 (2/3)2 + 2 (2/3) – 4
MP Board Class 9th Maths Solutions Chapter 2 बहुपद Ex 2.5 9
अतः अभीष्ट शेषफल = -136/27.

प्रश्न 11.
जाँच कीजिए कि p(x), q(x) का एक गुणज है या नहीं :
(i) p(x) = x3 – 4x2 + 4x – 3 ; q(x) = x – 2 है
(ii) p(x) = 2x3 – 11x2 – 4x + 5 ; q(x) = 2x + 1 है
(iii) p(x)= x3 – x + 1 ; q(x) = 2 – 3x है
हल:
(i) p(x), q(x) का एक गुणज होगा यदि q(x), p(x) को पूर्णतया विभाजित करेगा अर्थात् शेषफल शून्य होगा अन्यथा नहीं।
अब q(x) = x – 2 = 0 ⇒ x = 2, q(x) का एक शून्यक है।
एवं p(x) = x3 – 4x2 + 4x – 3
⇒ शेषफल p(2) = (2)3 – 5(2)2 + 4(2) – 3
= 8 – 20 + 8 – 3
= 16 – 23 = -7 ≠ 0
अतः p(x), q(x) का गुणज नहीं है।

(ii) p(x), q(x) का एक गुणज होगा यदि q(x), p(x) को पूर्णतया विभाजित करेगा अर्थात् शेषफल शून्य होगा अन्यथा नहीं।
अब q(x) = 2x + 1 = 0 = x = -1/2, 4(x) का एक शून्यक है।
एवं p(x) = 2x3 – 11x2 – 4x + 5
MP Board Class 9th Maths Solutions Chapter 2 बहुपद Ex 2.5 10
अतः p(x), q(x) का गुणज नहीं है।

(iii) p(x), q(x) का गुणज होगा यदि q(x), p(x) को पूर्णतया विभाजित करेगा अर्थात् शेषफल शून्य होगा अन्यथा नहीं।
अब q(x) = 2 – 3x = 0 ⇒ x = 2/3, q(x) का एक शून्यक है
एवं p(x) = x3 – x + 1
MP Board Class 9th Maths Solutions Chapter 2 बहुपद Ex 2.5 10a
अतः p(x), q(x) का गुणज नहीं है।
MP Board Solutions

प्रश्न 12.
दर्शाइए कि:
(i) x + 3 बहुपद 69 + 11x – x +3 का एक गुणनखण्ड है।
(ii) 2x – 3 बहुपद x + 2x3 – 9x2 + 12 का एक गुणनखण्ड है।
(iii) q(x), p(x) का एक गुणनखण्ड है जहाँ q(x) =  \( \frac{x}{3}-\frac{1}{4} \) एवं p(x) = 8x3 – 6x 2 – 4x + 3.
हल:
(i) चूँकि x + 3 का शून्यक – 3 है
p(x) = 69 + 11x – x2 +x – शेषफल
p(-3) = 69 + 11(-3)-(-3)2 + (-3)3
= 69 – 33 – 9 – 27 = 69 – 69 = 0
अतः (x + 3) बहुपद 69 + 11x – x2 + x3 का एक गुणनखण्ड है।

(ii) चूँकि 2x -3 का शून्यक 3/2 है
p(x) = x + 2x3 – 9x2 + 12
शेषफल  p (3/2) = (3/2) + 2 (3/2)3 – 9 (3/2)2 + 12
= 3/2 + 2 (27/8) – 9 (9/4) + 12
MP Board Class 9th Maths Solutions Chapter 2 बहुपद Ex 2.5 11
अत: 2x – 3 बहुपद x + 2x3 – 9x2 + 12 का एक गुणनखण्ड है।

(iii) चूँकि q(x) = \( \frac{x}{3}-\frac{1}{4} \)  ⇒ x – 3/4 का शून्यक 3/4 है
एवं  p(x) = 8x3 – 6x2– 4x + 3.
शेषफल p (3/4) = 8 (3/4)3 – 6 (3/4)2 – 4 (3/4) + 3.
MP Board Class 9th Maths Solutions Chapter 2 बहुपद Ex 2.5 11as
अतः q(x), p(x) का एक गुणनखण्ड है।

प्रश्न 13.
m के किस मान के लिए x3 – 2mx2 + 16 द्विपद x + 2 से विभाज्य है ?
हल:
चूँकि बहुपद x3 – 2mx2 + 16 द्विपद x + 2 से विभाज्य है
अतः शेषफल शून्य होगा। द्विपद x + 2 का शून्यक x + 2 = 0 ⇒ x = -2
एवं बहुपद p(x) = x3 – 2mx2 + 16
⇒ शेषफल p(-2) = (-2)3 – 2 m (-2) + 16 = 0
⇒ – 8 – 8 m + 16 = 0
⇒ 8m = 8 = m = 8/8 = 1
अतः m का अभीष्ट मान = 1.

प्रश्न 14.
m का मान ज्ञात कीजिए जबकि 2x – 1 बहुपद 8x4 + 4x3 – 16x2 + 10x + m का गुणनखण्ड है।
हल:
चूँकि 2x – 1 बहुपद p(x) = 8x4  + 4x3 – 16x2 + 10x + m का एक गुणनखण्ड है और 2x – 1
का शून्यक 2x – 1 = 0 ⇒ x = 1/2 है।
इसलिए शेषफल p (1/2) = 8 (1/2)4 + 4 (1/2)3 – 16(1/2)2 + 10 (1/2) + m = 0
MP Board Class 9th Maths Solutions Chapter 2 बहुपद Ex 2.5 12
अतः m का अभीष्ट मान = – 2.

प्रश्न 15.
गुणनखण्ड कीजिए :
(i) x2 + 9x + 18
(ii) 6x2 + 7x – 3
(ii) 2x2 – 7x – 15
(iv) 84 – 2r – 2r2.
हल:
(i) x2+ 9x + 18 = x2 + (3 + 6) x + 18
= x2 + 3x + 6x + 18
= x (x + 3)+6 (x + 3)
= (x + 3) (x + 6)
अतः अभीष्ट गुणनखण्ड = (x + 3) (x + 6).

(ii) 6x2 + 7x -3 = 6x2 + (9 – 2)x – 3
= 6x2 + 9x – 2x -3
= 3x (2x + 3) – 1 (2x + 3)
= (2x + 3) (3x – 1)
अतः अभीष्ट गुणखण्ड = (2x + 3) (3x -1).

(iii) 2x2 – 7x – 15 = 2x2 – (10 -3)x – 15
= 2x2 – 10x + 3x – 15
= 2x (x – 5) + 3 ( x- 5)
= (x – 5)(2x + 3)
अतः अभीष्ट गुणखण्ड = (x – 5) (2x + 3).

(iv) 84 – 2r – 2r2 = 2 [42 -r – r2]
= 2 [42 – (7 – 6) – r2]
= 2 [42 – 7r + 6r – r2]
= 2 [7 (6 – r) + r (6 – r)]
= 2 (6 – 1) (7+r)
अतः अभीष्ट गुणखण्ड = 2 (6 – 1) (7 + r).

MP Board Solutions

प्रश्न 16.
गुणनखण्ड कीजिए :
(i) 2x3 – 3x2 -17x + 30
(ii) x3 – 6x2 + 11x – 6
(iii) x3 + x2 – 4x – 4
(iv) 3x3 – x2 – 3x + 1.
हल:
(i) मान लीजिए – p(x) = 2x3 – 3x2 – 17x + 30
अब चूँकि p(2) = 2 (2)3 – 3 (2)2 – 17 (2) + 30
= 16 – 12 -34 + 30
= 46 – 46 = 0 है
अतः x = 2 अर्थात् x – 2, p(x) का एक गुणनखण्ड है

अब 2x3 – 3x2 – 17x + 30 = 2x3 – 4x2 + x2 – 2x – 15x + 30
= 2x2 (x – 2) + x (x -2) – 15 (x – 2)
= (x – 2) [2x2 + x – 15]
= (x – 2)[2x3 + (6 – 5)x – 15]
= (x – 2) [2x2 + 6x – 5x – 15]
= (x – 2)[2x (x + 3) – 5 (x + 3)]
= (x – 2) (x + 3) (2x – 5)
अतः अभीष्ट गुणखण्ड = (x – 2) (x + 3) (2x – 5).

(ii) मान लीजिए p(x) = x3 – 6x2 + 11x – 6
अब चूंकि p(1) = (1)3 – 6 (1)2 + 11 (1) – 6
= 1 – 6 + 11 – 6 = 12 – 12 = 0 है
अतः x – 1 बहुपद p(x) का एक गुणखण्ड है।
अब x3 – 6x2 + 11x – 6 = x3 – x2 – 5x2 + 5x + 6x – 6
= x2 (x – 1) – 5x (x – 1)+ 6 (x – 1)
= (x – 1) [x2 – 5x + 6]
= (x – 1) [x2 – (2 + 3)x  + 6]
= (x – 1) [x2 – 2x – 3x + 6]
= (x- 1) [x(x – 2)-  3 (x – 2)]
= (x – 1) (x – 2) (x – 3)
अतः अभीष्ट गुणखण्ड = (x – 1) ( x- 2) (x – 3).

(iii) मान लीजिए p(x) = x3 + x2– 4x – 4
= x2 (x + 1) – 4 (x + 1)
= (x + 1) [x2 – 4]
= (x + 1) [(x) – (2)]
= (x + 1) (x – 2) (x + 2)
अतः अभीष्ट गुणनखण्ड = (x – 2) (x + 1) (x + 2).

(iv) मान लीजिए p(x) = 3x3 – x2 – 3x + 1
= x2 (3x – 1)- 1 (3x – 1)
= (3x – 1) [x2 – 1] = (3x – 1) [(x) – (1)]
= (3x- 1) (x – 1) (x + 1)
अतः अभीष्ट गुणखण्ड = (3x – 1) (x – 1) (x + 1).

प्रश्न 17.
उपयुक्त सर्वसमिका का उपयोग करते हुए निम्नलिखित के मान निकालिए :
(i) 1033
(ii) 101 x 102
(iii) 9992.
हल:
(i) ∵ सर्वसमिका : (a + b)3 = a3 + 3a2b + 3ab2 + b3
⇒ (100 + 3)3 = (100)3 + 3 (100)2 (3) + 3 (100) (3)2 + (3)3 (a = 100 एवं b = 3 रखने पर)
⇒ (103)3 = 1000000 + 90000 + 2700 + 27
= 1092727
अतः अभीष्ट मान = 1092727.

(ii) (101) x (102) = (100 + 1) x (100 + 2)
सर्वसमिका : (x +.a) (x + b) = x2 + (a + b)x + ab.
अब x = 100, a = 1 एवं b = 2 लेने पर,
(100 + 1) (100 + 2) = (100)2 + (1 + 2) x 100 + 1 x 2
(101) x (102) = 10000 + 300 + 2 = 10302
अतः अभीष्ट मान = 10302.

(iii) (999)2 = (1000 – 1)2
सर्वसमिका : (a – b)2 = a2 – 2ab + b2
अब a = 1000 एवं b = 1 लेने पर,
(1000 – 1)2 = (1000)2 – 2 (1000) (1) + (1)2
= 1000000 – 2000 + 1
= 1000001 – 2000 = 998001
अतः अभीष्ट मान = 998001.

प्रश्न 18.
निम्नलिखित के गुणनखण्ड कीजिए :
(i) 4x2 + 20x + 25
(ii) 9y2 – 66yz + 12z2
हल:
(i) 4x2 + 20x + 25 = (2x)2 + 2 (2x) (5) + (5)2
= (2x + 5) [∵ a2 + 2ab + b2 = (a + b)2 सर्वसमिका]
अतः अभीष्ट गुणनखण्ड = (2x + 5)2.

(ii) 9y2 – 66yz + 121z2 = (3y)2  – 2 (3y) (112) + (112)2 .
= (3y – 112)2 (∵ सर्वसमिका a2 – 2ab + b = (a – b)]
अतः अभीष्ट गुणनखण्ड = (3y – 11z)2.
MP Board Solutions

प्रश्न 19.
(4a – b + 2c)2 का प्रसार लिखिए।
हल:
∵  सर्वसमिका : (x + y + z)2 = x2 + y2 + z2 + 2xy +2yz + 2zx
यहाँ x = 4a, y = – b एवं z = 2c लेने पर,
⇒ (4a – b + 2c)2 = (4a)2 + (- b)2 + (2c)2 + 2 (4a) (- b) + 2 (- b) (2c) + 2(2c) (4a)
= 16a2 + b2 + 4c2 – 8ab – 4bc + 16ca
अतः अभीष्ट प्रसार = 16a2 + b2 + 4c2 – 8ab – 4bc + 16ca.

प्रश्न 20.
सर्वसमिका का प्रयोग कर (2x + y + z)2 का प्रसार कीजिए। (2019)
हल:
4x + 2 + 2 + 4xy + 2yz + 4zx

प्रश्न 21.
यदि a + b + c= 9 और ab + bc + ca = 26 है, तो a2 + b2 + c2 का मान ज्ञात कीजिए।
हल:
∵ (a + b + c)2= (a2 + b2 + c2) + 2 (ab + bc + ca) (सर्वसमिका)
⇒ (9)2 = (a2 + b2 + c2) + 2 (26)
[∵  (a + b + c) = 9 एवं (ab + bc + ca) = 26 दिया है]
⇒ 81 = a2 + b2 + c2 + 52
⇒ a2 + b2 + c2 = 81 – 52 = 29
अतः  a2 + b2 + c2 का अभीष्ट मान = 29.

प्रश्न 22.
(3a – 2b)3 का प्रसार कीजिए।
हल:
सर्वसमिका : (x – y)3 = x3 – 3x2y + 3xy2 – y3
अब x = 3a एवं y = 2b रखने पर प्राप्त होता है :
(3a – 2b)3 = (3a)3 – 3(3a)2 (2b) + 3(3a)(2b)2 – (2b)3
= 27a3 – 54a2b + 36ab2 – 8b3
अतः अभीष्ट प्रसार = 27a3 – 54a2b + 36ab2 – 8b3.

प्रश्न 23.
गुणनखण्ड कीजिए : 1+ 64x3.
हल:
1+ 64x3 = (1)3 + (4x)3
= (1 + 4x) [(1) 2– (1) (4x) + (4x)2]
[∵  सर्वसमिका a3 + b3 = (a + b) (a2 – ab + b2) से]
= (1 + 4x) (1 – 4x + 16x2)
अतः अभीष्ट गुणनखण्ड = (1 + 4x) (1 – 4x + 16x2).

प्रश्न 24.
गुणनखण्ड कीजिए : a3 – 8b3 – 64c3 – 24abc.
हल:
a3 – 8b3 – 64c3 – 24abc
= (a)3 + (-2b)3 + (-4c)3 – 3(a) (-2b) (-4c)
= (a – 2b -4c) [(a)2 + (-2b)2 + (-4c)2 – (a) (-2b)- (-2b) (-4c)- (-4c) (a)]
[∵ सर्वसमिका : x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + 2 – xy – yz – zx)]
= (a – 2b – 4c) (a + 4b2 + 16c2 + 2ab – 8bc + 4ca)
अतः अभीष्ट गुणनखण्ड = (a – 2b – 4c) (a2 + 4b2 + 16c2 + 2ab – 8bc + 4ca).
MP Board Solutions

MP Board Class 9th Maths Chapter 2 अति लघु उत्तरीय प्रश्न

प्रश्न 1.
निम्नलिखित में से कौन से व्यंजक बहुपद हैं ? अपने उत्तर का औचित्य दीजिए :
(i) 8
(ii) √3x2 – 2x
(iii) 1 – √5x
(iv) MP Board Class 9th Maths Solutions Chapter 2 बहुपद Ex 2.5 13
(v) MP Board Class 9th Maths Solutions Chapter 2 बहुपद Ex 2.5 14
(vi) \(\frac{1}{x+1}\)
(vii) \(\frac{1}{7} a^{3}-\frac{2}{\sqrt{3}} a^{2}+4 a-7\)
(viii) \(\frac{1}{2x}\).
उत्तर:
(i) 8 में चर का घातांक शून्य है जो एक पूर्ण संख्या है, अत: बहुपद है।
(ii) √3x2 – 2x में चर की प्रत्येक घात पूर्ण संख्या है, इसलिए बहुपद है।
(ii) 1 – √5x  में चर की घात 1/2 है जो पूर्ण संख्या नहीं है, इसलिए बहुपद नहीं है।
(iv) MP Board Class 9th Maths Solutions Chapter 2 बहुपद Ex 2.5 13  अर्थात् \(\frac{1}{5}\)x2 + 5x + 7 में चर की प्रत्येक घात पूर्ण संख्या है, अत: यह बहुपद है।
(v) MP Board Class 9th Maths Solutions Chapter 2 बहुपद Ex 2.5 14  में चर का घातांक – 1 है जो पूर्ण संख्या नहीं है, इसलिए यह बहुपद नहीं है।
(vi) \(\frac{1}{x+1}\) में चर की घात पूर्ण संख्या नहीं है, अत: यह बहुपद नहीं है।
(vi) \(\frac{1}{7} a^{3}-\frac{2}{\sqrt{3}} a^{2}+4 a-7\)  में चर की प्रत्येक घात पूर्ण संख्या है, अत: यह बहुपद है।
(viii) \(\frac{1}{2x}\) अर्थात् \(\frac{1}{2}\)x-1 में चर की घात – 1 है जो पूर्ण संख्या नहीं है। अत: यह बहुपद नहीं है।

प्रश्न 2.
क्या निम्नलिखित कथन सत्य हैं या असत्य, लिखिए। अपने उत्तर का औचित्य दीजिए।
(i) एक द्विपद के अधिकतम दो पद हो सकते हैं।
(ii) प्रत्येक बहुपद एक द्विपद है।
(iii) एक द्विपद की घात 5 हो सकती है।
(iv) एक बहुपद का शून्यक सदैव 0 होता है।
(v) एक बहुपद के एक से अधिक शून्यक नहीं हो सकते हैं।
(vi) घात 5 वाले दो बहुपदों के योग की घात सदैव 5 होती है।
(vii) \(\frac{1}{\sqrt{5}} x^{1 / 2}+1\)  एक बहुपद है।
(vii) \( \frac{6 \sqrt{x}+x^{3 / 2}}{\sqrt{x}}\)  , x ≠ 0 एक बहुपद है।
उत्तर:
(i) असत्य है, क्योंकि द्विपद में ठीक दो पद होते हैं।
(ii) असत्य है, क्योंकि किसी बहपद में कितने भी पद हो सकते हैं।
(iii) सत्य है, क्योंकि द्विपद की कितनी भी घात हो सकती है।
(iv) असत्य है, क्योंकि बहुपद का शून्यक कोई भी वास्तविक संख्या हो सकती है।
(v) असत्य है, क्योंकि एक बहुपद के कितने भी शून्यक हो सकते हैं।
(vi) असत्य है, क्योंकि x + 3 एवं – x5 + x + 5 का योग x + 8 है जिसकी घात 5 है।
(vii) असत्य है, क्योंकि चर की घात 1/2 है जो पूर्ण संख्या नहीं है।
(viii) सत्य है, क्योंकि \( \frac{6 \sqrt{x}+x^{3 / 2}}{\sqrt{x}}\) = 6 + x है जिसमें चर की घात पूर्ण संख्या है।

MP Board Class 9th Maths Chapter 1 वस्तुनिष्ठ प्रश्न

बहु-विकल्पीय प्रश्न

प्रश्न 1.
निम्नलिखित में से कौन एक बहुपद है :
MP Board Class 9th Maths Solutions Chapter 2 बहुपद Ex 2.5 15
उत्तर:
(c)

प्रश्न 2.
√2 निम्नलिखित घात का एक बहुपद है :
(a) 2
(b) 0
(c) 1
(d)  \(\frac { 1 }{ 2 }\)
उत्तर:
(b) 0

प्रश्न 3.
बहुपद 4x4 + 0x3 + 0x5 + 5x + 7 की घात है :
(a) 4
(b) 5
(c) 3
(d) 7
उत्तर:
(a) 4

प्रश्न 4.
शून्य बहुपद की घात है :
(a) 0
(b) 1
(c) कोई भी प्राकृत संख्या
(d) परिभाषित नहीं।
उत्तर:
(d) परिभाषित नहीं

प्रश्न 5.
यदि p(x) = x2 – 2√2 x + 1 है, तो p (2√2) बराबर है :
(a) 0
(b) 1
(c) 4√2
(d) 8√2 + 1.
उत्तर:
(b) 1
MP Board Solutions

प्रश्न 6.
जब x = -1 है, तो बहुपद 5x – 4x2 + 3 का मान है :
(a) -6
(b) 6
(c) 2
(d) -2.
उत्तर:
(a) -6

प्रश्न 7.
यदि p(x) = x + 3 है, तो p(x) + p(-x) बराबर है :
(a) 3
(b) 2x
(c) 0
(d) 6.
उत्तर:
(d) 6.

प्रश्न 8.
शून्य बहुपद का शून्यक है :
(a) 0
(b) 1
(c) कोई वास्तविक संख्या
(d) परिभाषित नहीं।
उत्तर:
(c) कोई वास्तविक संख्या

प्रश्न 9.
बहुपद p(x) = 2x + 5 का शून्यक है :
(a) – 2/5
(b) -5/2
(c) 2/5
(d) 5/2.
उत्तर:
(b) -5/2

प्रश्न 10.
बहुपद 2x2 + 7x – 4 के शून्यकों में से एक है :
(a) 2
(b) 1/2
(c) -1/2
(d) -2.
उत्तर:
(b) 1/2

प्रश्न 11.
यदि x51 + 51 को x + 1 से भाग दिया जाय तो शेषफल है :
(a) 0
(b) 1
(c) 490
(d) 50.
उत्तर:
(d) 50.

प्रश्न 12.
यदि x + 1 बहुपद 2x2 + kx का एक गुणखण्ड है, तो k मान है :
(a) -3
(b) 4
(c) 2
(d) -2.
उत्तर:
(c) 2

प्रश्न 13.
x +1 निम्नलिखित बहुपद का एक गुणनखण्ड है :
(a) x3 + x2 – x + 1
(b) x3 + x2 + x +1
(c) x4 + x3 +  x2 +1
(d) x4 + 3x3 + 3x2 + x + 1.
उत्तर:
(b) x3 + x2 + x +1

प्रश्न 14.
(25x2 – 1) + (1 + 5x)2 के गुणनखण्डों में से एक है :
(a) 5 +x
(b) 5 – x
(c) 5x – 1
(d) 10x.
उत्तर:
(d) 10x.

प्रश्न 15.
2492 – 2482 का मान है :
(a) 12
(b) 477
(c) 487
(d) 497.
उत्तर:
(d) 497.

प्रश्न 16.
4x2 + 8x + 3 का गुणनखण्ड है :
(a) (x + 1) (x + 3)
(b) (2x + 1) (2x + 3)
(c) (2x + 2) (2x + 5)
(d) (2x – 1) (2x – 3).
उत्तर:
(b) (2x + 1) (2x + 3)

प्रश्न 17.
निम्नलिखित में से कौन (x + y) – (x + y) का एक गुणनखण्ड है :
(a) x2 + y2 + 2xy
(b) x2 + y2 –  xy .
(c) xy2
(d) 3xy.
उत्तर:
(d) 3xy

प्रश्न 18.
(x + 3)3 के प्रसार में x का गुणांक है :
(a) 1
(b) 9
(c) 18
(d) 27.
उत्तर:
(d) 27
MP Board Solutions

प्रश्न 19.
यदि \( \frac{x}{y}+\frac{y}{x}=-1(x, y \neq 0)\)  है, तो x3 – y3 का मान है :
(a) 1
(b) -1
(c) 0
(d) 1/2
उत्तर:
(c) 0

प्रश्न 20.
यदि 49x2 – b = (7x + \(\frac { 1 }{ 2 }\)) (7x –\(\frac { 1 }{ 2 }\)) है, तो 6 का मान है :
(a) 0
(b) \(\frac { 1 }\sqrt{ 2 }\)
(c) 1/4
(d) \(\frac { 1 }{ 2 }\).
उत्तर:
(c) 1/4

प्रश्न 21.
यदि a + b + c = 0 है, तो a3 + b3 + c3 बराबर है:
(a)0
(b) abc
(c) 3abc
(d) 2abc.
उत्तर:
(c) 3abc

प्रश्न 22.
यदि सभी x के लिए 2 + kx + 6 = (x + 2) (x + 3) हैं, तो k का मान है :
(a) 1
(b) -1
(c) 5
(d) 3
उत्तर:
(c) 5

प्रश्न 23.
बहुपद 5x – 4x2 + 3 का मान जब x = 2 हो, तो है :
(a) 10
(b) -3
(c) 12
(d) 3.
उत्तर:
(b) -3

प्रश्न 24.
बहुपद x2 + x – 6 का एक गुणनखण्ड (x – 2) है, तो दूसरा गुणनखण्ड होगा :
(a) (x + 3)
(b) (x + 2)
(c) (x – 3)
(d) (x – 2).
उत्तर:
(a) (x + 3)

प्रश्न 25.
बहुपद x2 – 11x + 10 का एक गुणनखण्ड (x – 1) है, तो दूसरा गुणनखण्ड होगा :
(a) (x + 10)
(b) (x – 10)
(c) (x – 11)
(d) (x + 11).
उत्तर:
(b) (x – 10)

प्रश्न 26.
बहुपद x2 – 10x – 24 का एक गुणनखण्ड (x + 2) है, तो दूसरा गुणनखण्ड होगा :
(a) (x + 12)
(b) (x – 12)
(c) (x + 8)
(d) (x – 8).
उत्तर:
(b) (x – 12)

प्रश्न 27.
एक घात वाले बहुपद को कहते हैं : (2018)
(a) द्विघात
(b) त्रिघात
(c) द्विपद
(d) रैखिक।
उत्तर:
(d) रैखिक

प्रश्न 28.
p(x) = x + x2 + 2 कितने पदीय होगा :
(a) एक पदी
(b) द्विपदी
(c) त्रिपदी
(d) इनमें से कोई नहीं।
उत्तर:
(c) त्रिपदी

प्रश्न 29.
बहुपद 9x7 – 4x6 +x + 9 की घात है :
(a) 9
(b) 7
(c) 4
(d) 6.
उत्तर:
(b) 7

प्रश्न 30.
बहुपद 1 +3y है :
(a) रेखीय
(b) द्विघाती
(c) त्रिघाती
(d) चतुर्घाती।
उत्तर:
(a) रेखीय

प्रश्न 31.
बहुपद 2 – x + x3 में x का गुणांक है :
(a) 1
(b) 2
(c) 0
(d) -1.
उत्तर:
(d) -1.

प्रश्न 32.
बहुपद 4x2 + 5x +7 की घात है : (2019)
(a) 2
(b) 3
(c) 7
(d) 5.
उत्तर:
(a) 2
MP Board Solutions

प्रश्न 33.
रेखीय बहुपद है : (2019)
(a) 3x + 5
(b) 4x + 5x
(c) 4x2 + 6x + 7
(d) x2 + 15.
उत्तर:
(a) 3x + 5

प्रश्न 34.
बहुपद p(x) = 3x – 2 का शून्यक है : (2019)
(a) -2/3
(b) 2/3
(c) 3/2
(d) 0.
उत्तर:
(b) 2/3

रिक्त स्थानों की पूर्ति

1. x2 – y2 का गुणनखण्ड ………. है।
2. बहुपद में सबसे बड़े घात वाले घातांक को बहुपद का ……….. कहते हैं।
3. एक बीजीय व्यंजक जिसमें चर के घातों में अनेक पद हो, तो ………….. कहलाता है।
4. बहुपद में चर की घात सदैव ……… होती है।
5. अशून्य अचर पद की घात सदैव ………….. होती है।
6. रेखीय बहुपद में चर की अधिकतम घात ……….. होती है। (2019)
7. 3x3 में x का गुणांक ………. है। (2018)
8. बहुपद x3 – x2 + 1 में x2 का गुणांक ……….. है। (2019)
उत्तर;
1. (x + y) (x -y),
2. घात,
3. बहुपद,
4. पूर्ण संख्या,
5. शून्य,
6. एक,
7. तीन,
8. – 1.
MP Board Solutions

जोड़ी मिलान

स्तम्भ ‘A’  स्तम्भ ‘B’

1. x3 + y3 (2019)  (a)-1
2. x3 – y3   (2019) (b) 2
3. बहुपद x + 1 का शून्यक (2019) (c) (x + y) (x2 – xy + y2)
4. बहुपद x2 + x + 5 की घात (2019) (d) (x -y) (x2 +xy + y2) .
उत्तर:
1.→(c), 2.→(d), 3.→(a), 4.→(b).

सत्य/असत्य कथन
1. बहुपद 7 एक एकपदी व्यंजक है।
2. शून्य बहुपद की घात शून्य होती है।
3. x5 – x4 + 3 की घात 5 है।
4. अशून्य अचर पद की घात परिभाषित नहीं है।
5. बहुपद 7x3 एक त्रिघात बहुपद है।
6. 3x2 + 5 एक रेखीय बहुपद है।
7. ल. स. x म. स. = बहुपदों का गुणनफल। (2018)
8. बहुपद x2 + 2x + 3 एक द्विपदी बहुपद है। (2019)
9. 7x2 + 3x + 5 में x2 का गुणांक 5 है। (2019)
उत्तर:
1. सत्य,
2. असत्य,
3. सत्य,
4. असत्य,
5. सत्य,
6. असत्य,
7. सत्य,
8. असत्य,
9. असत्य।

एक शब्द/वाक्य में उत्तर

1. ऐसा बहुपद क्या कहलाता है जिसके सभी गुणांक शून्य हैं।
2. ऐसा बहुपद क्या कहलाता है जिसमें केवल एक पद हो ?
3. केवल दो पदों वाला बहुपद क्या कहलाता है ?
4. केवल तीन पदों वाला बहुपद क्या कहलाता है ?
5. एक घात वाले बहुपद को क्या कहते हैं ?
6. बहुपद 2 – y2 – y3 + 2y8 की धात लिखिए।
उत्तर:
1. शून्य बहुपद,
2. एक पदीय बहुपद,
3. द्विपद,
4. त्रिपद,
5. रेखीय बहुपद,
6. 8 (आठ)।

MP Board Class 9th Maths Solutions

MP Board Class 9th Maths Solutions Chapter 1 संख्या पद्धति Additional Questions

MP Board Class 9th Maths Solutions Chapter 1 संख्या पद्धति Additional Questions

MP Board Class 9th Maths Chapter 1 अतिरिक्त परीक्षोपयोगी प्रश्न

MP Board Class 9th Maths Chapter 1 दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
0.6 + \(0.\overline { 7 }\) + \(0.4\overline { 7 }\) को p/q के रूप में व्यक्त कीजिए; जहाँ p और q पूर्णांक हैं तथा q ≠ 0 है।
हल:
0.6 = \(\frac { 6 }{ 10 }\) = \(\frac { 3 }{ 5 }\)
मान लीजिए x = \(0.\overline { 7 }\) = 0.777 ….
⇒ 10x = 7.777…. = 7 + 0.777 = 7 + x.
⇒ 9x = 7 ⇒ x = \(\frac { 7 }{ 9 }\)

मान लीजिए y = \(0.4\overline { 7 }\) = 0.4777….
⇒ 10y = 4.7777….. = 4.3 + 0.4777…… = 4.3 + y
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 4
अतः दी हुई राशि का अभीष्ट p/q रूप = \(\frac { 167 }{ 90 }\) .

प्रश्न 2.
सरल कीजिए:
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 5
हल:
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 5a
अतः दिए हुए अपरिमेय व्यंजक का अभीष्ट सरल मान = 1.

प्रश्न 3.
यदि √2 = 1.414, √ 3= 1.732 हो, तो MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 6 का मान ज्ञात कीजिए।
हल:
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 6a
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 6b
अतः दिए हुए अपरिमेय व्यंजक का अभीष्ट मान = 2.063.

प्रश्न 4.
सरल कीजिए : \( (256)^{-\left(4^{-3 / 2}\right)}\)
हल:
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 7
अतः अभीष्ट सरल मान = 1/2.
MP Board Solutions

प्रश्न 5.
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 8 का मान ज्ञात कीजिए।
हल:
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 8
= 4(216)2/3 + (256)3/4 + 2(243)1/5
= 4(63)2/3+ (28)3/4 + 2(35)1/5
= 4 x 62 + 26 + 2 x 3
= 4 x 36 + 64 + 6
= 144 + 64 + 6 = 214
अत: अभीष्ट मान = 214.

MP Board Class 9th Maths Chapter 1 लघु उत्तरीय प्रश्न

प्रश्न 1.
ज्ञात कीजिए कि कौन-से चर x, y, z और u परिमेय संख्याएँ निरूपित करते हैं तथा कौन-से चर अपरिमेय संख्याएँ निरूपित करते हैं :
(i) x2 = 5
(ii) y2 = 9
(iii) z2 = 0.04
(iv) u2 = \(\frac { 17 }{ 4 }\).
हल:
(i) x2 = 5 ⇒ x = √5 अपरिमेय संख्या
(ii) y2 = 9 = y = √9 = 3 परिमेय संख्या
(iii) z2 = 0.04 ⇒ y2 = (0.2)2 = y = 0.2 परिमेय संख्या
(iv) u2 = \(\frac { 17 }{ 4 }\) ⇒ u = \(\sqrt [ 17 ]{ 4 }\) = \(\sqrt [ 17 ]{ 2 }\)
अतः y एवं z परिमेय संख्याएँ हैं तथा x एवं u अपरिमेय संख्याएँ हैं।

प्रश्न 2.
निम्नलिखित के बीच तीन परिमेय संख्याएँ ज्ञात कीजिए :
(i) -1 और -2
(ii) 0.1 और 0.11
(iii) \(\frac { 5 }{ 7 }\) और \(\frac { 6 }{ 7 }\)
(iv) \(\frac { 1 }{ 4 }\) और \(\frac { 1 }{ 5 }\).
हल:
(i) – 1 और – 2 को \(\frac { 4 }{ 4 }\) से गुणा करके लिखने पर,
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 9
अतः अभीष्ट परिमेय संख्याएँ हैं : – 5/4, – 6/4 एवं – 7/4.

(ii) 0.1 और 0.11 को = से गुणा करके लिखने पर,
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 9a
अत: अभीष्ट परिमेय संख्याएँ हैं : \(\frac { 0.41 }{ 4 }\), \(\frac { 0.42 }{ 4 }\) एवं \(\frac { 0.43 }{ 4 }\).

(iii) \(\frac { 5 }{ 7 }\) और \(\frac { 6 }{ 7 }\) को \(\frac { 4 }{ 4 }\) से गुणा करके लिखने पर,
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 9a
अत: अभीष्ट परिमेय संख्याएँ हैं : \(\frac { 21 }{ 28 }\),\(\frac { 22 }{ 28 }\) एवं \(\frac { 23 }{ 28 }\).

(iv) \(\frac { 1 }{ 4 }\) और \(\frac { 1 }{ 5 }\) को \(\frac { 4 }{ 4 }\) से गुणा करके लिखने पर,
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 9c
अत: अभीष्ट परिमेय संख्याएँ हैं : \(\frac { 4 }{ 17 }\), \(\frac { 4 }{ 18 }\) एवं \(\frac { 4 }{ 19 }\)

प्रश्न 3.
\(\frac { 5 }{ 7 }\) और \(\frac { 6 }{ 7 }\) के बीच दो परिमेय संख्याएँ लिखिए। (2019)
हल:
\(\frac { 16 }{ 21 }\) एवं \(\frac { 17 }{ 21 }\)

प्रश्न 4.
निम्नलिखित के बीच एक परिमेय संख्या और एक अपरिमेय संख्या प्रविष्ट कीजिए :
(i) 2 और 3
(ii) 0 और 0.1
(iii) \(\frac { 1 }{ 3 }\) और \(\frac { 1 }{ 2 }\)
(iv) \(\frac { -2 }{ 5 }\) और \(\frac { 1 }{ 2 }\)
(v) 0.15 और 0.16
(vi) √2 और √3
(vii) 2.357 और 3.121
(viii) 0.0001 और 0.001
(ix) 3.623623 और 0.484848
(x) 6.375289 और 6.375738.
उत्तर:
(i) 2 और 3 के बीच परिमेय संख्या = 2.5 एवं अपरिमेय संख्या = √6
(ii) 0 और 0.1 के बीच परिमेय संख्या = 0.05 एवं अपरिमेय संख्या = 0.010010001…
(iii) \(\frac { 1 }{ 3 }\) और \(\frac { 1 }{ 2 }\) के बीच परिमेय संख्या = \(\frac { 2 }{ 5 }\) = एवं अपरिमेय संख्या = \(\frac { 1 }{ \sqrt { 5 } }\)
(iv) –\(\frac { 2 }{ 5 }\) और \(\frac { 1 }{ 2 }\) के बीच परिमेय संख्या = \(\frac { 1 }{ 4 }\) = एवं अपरिमेय संख्या = \(\frac { 1 }{ \sqrt { 5 } }\)
(v) 0.15 और 0.16 के बीच परिमेय संख्या = 0.155 एवं अपरिमेय संख्या = 0.15050050005 ….
(vi) √2 एवं √3 के बीच परिमेय संख्या = 1.5 एवं अपरिमेय संख्या = 1.505005000…..
(vii) 2.357 एवं 3.121 के बीच परिमेय संख्या = 2.5 एवं अपरिमेय संख्या = 3.010010001….
(viii) 0.0001 और 0:001 के बीच परिमेय संख्या = 0.0005 एवं अपरिमेय संख्या = 0.0083030030003……..
(ix) 3.623623 और 0.484848 के बीच परिमेय संख्या = 2 एवं अपरिमेय संख्या = 2.01001000100001……..
(x) 6.375289 और 6.375738 के बीच परिमेय संख्या = 6.3755 एवं अपरिमेय संख्या = 6.37530300300030000 …

MP Board Solutions
प्रश्न 5.
संख्या रेखा पर (i) √5, (ii) √10 , (iii) √13 और (iv) √17 को निरूपित कीजिए।
हल:
(i) संख्या रेखा पर √5 का निरूपण :
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 10
(ii) संख्या रेखा पर √10 का निरूपण :
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 10a
(iii) संख्या रेखा पर √13 का निरूपण :
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 10b
(iv) संख्या रेखा पर √17 का निरूपण :
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 10c
अतः अभीष्ट मान संख्या रेखा पर बिन्दु C से निरूपित हैं।

प्रश्न 6.
संख्या रेखा पर निम्नलिखित संख्याओं को ज्यामितीय रूप से निरूपित कीजिए :
(i) \(\sqrt { 4.5 }\)
(ii) \(\sqrt { 5.6 }\)
(iii) \(\sqrt { 8.1 }\)
(iv) \(\sqrt { 2.3 }\)
हल:
(i) \(\sqrt { 4.5 }\) का संख्या रेखा पर ज्यामितीय निरूपण :
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 11
अत: संख्या रेखा पर अभीष्ट बिन्दु E = \(\sqrt { 4.5 }\) निरूपित हैं।

(ii) \(\sqrt { 5.6 }\) का संख्या रेखा पर ज्यामितीय निरूपण :
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 12
चित्र 1.10 अतः संख्या रेखा पर अभीष्ट बिन्दु E = \(\sqrt { 5.6 }\) निरूपित है।

(iii) \(\sqrt { 8.1 }\) का संख्या रेखा पर ज्यामितीय निरूपण :
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 13
अतः संख्या रेखा पर अभीष्ट बिन्दु E = \(\sqrt { 8.1 }\) निरूपित है।

(iv) \(\sqrt { 2.3 }\) का संख्या रेखा पर ज्यामितीय निरूपण करना :
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 14
अतः संख्या रेखा पर अभीष्ट बिन्दु E = \(\sqrt { 2.3 }\) निरूपित है।

प्रश्न 7.
निम्नलिखित को p/q के रूप में व्यक्त कीजिए; जहाँ p और q पूर्णांक हैं तथा q ≠ 0 है :
(i) 0.2
(ii) \(0.\overline { 8 }\) अथवा 0.888…. (2019)
(iii) \(5.\overline { 2 }\),
(iv) \(0.\overline { 001 }\),
(v) 0.2555….
(vi) \(0.1\overline { 34 }\)
(vii) 0.00323232 ….
(viii) 0-404040 ….
(ix) \(0.12\overline { 3 }\).
हल:
(i) 0.2 = \(\frac { 2 }{ 10 }\) = \(\frac { 1 }{ 5 }\) .
(ii) 0.888 …. = x (मान लीजिए)
⇒ 10x = 8.888…..= 8 + 0.888….. = 8 + x.
⇒ 9x = 8 ⇒ x = \(\frac { 8 }{ 9 }\)

(iii) \(5.\overline { 2 }\) = 5.222….. = x (मान लीजिए)
⇒ 10x = 52.222…. = = 47 + 5.222 . . . . = 47 + x
⇒ 9x = 47 ⇒ x = \(\frac { 47 }{ 9 }\).

(iv) 0.001 = 0.001001001 …. =x (मान लीजिए)
⇒ 1000x = 1:001001001…. = 1+ 0.001001001 = 1 + x
⇒ 999x = 1 ⇒ x = \(\frac { 1 }{ 999 }\)

(v) 0.2555 …. = x (मान लीजिए)
⇒ 10x = 2.555 ….. = 2.3 + 0.2555 …. = 2.3 +x
⇒ 9x = 2.3 ⇒ n = 2.3 = \(\frac { 23 }{ 90 }\).

(vi) \(0.1\overline { 34 }\) = 0.1343434 …. =x (मान लीजिए)।
⇒ 100x = 13.434343…. = 13.3 + 0.1343434…. = 13:3 + x
⇒ 99x = 13.3 ⇒ x = \(\frac { 13.3 }{ 99 }\) = \(\frac { 133 }{ 990 }\).

(vii) 0.00323232 …. = x (मान लीजिए)
⇒ 100x = 0. 323232 .. . = 0.32 + 0.003232 …. = 0.32 + x
⇒ 99x = 032 ⇒ x = \(\frac { 0.32 }{ 99 }\) = \(\frac { 32 }{ 9900 }\) = \(\frac { 8 }{ 2475 }\)

(viii) 0.404040….. = x (मान लीजिए)
⇒ 100x = 40.404040….40 + 0.404040 …. = 40 +x
⇒ 99x = 40 ⇒ x = \(\frac { 40 }{ 99 }\)

(ix) \(0.12\overline { 3 }\) = 0.12333 …. = x (मान लीजिए)
⇒ 10x = 1.2333…. = 1.11 + 0.12333 . . . . = 1.11 + x
⇒ 9x = 1.11 ⇒ x = \(\frac { 1.11 }{ 9 }\) = \(\frac { 111 }{ 900 }\).

प्रश्न 8.
दर्शाइए कि 0.142857142857….= \(\frac { 1 }{ 7 }\) है।
हल:
मान लीजिए x = 0.142857142857 ….
⇒ 1000000x = 142857.142857142857…..
= 142857 + 0.142857142857 . . . . .
= 142857 + x
⇒ 999999x = 142857
⇒ x = \(\frac { 142857 }{ 999999 }\) = \(\frac { 1 }{ 7 }\)
⇒ 0.142857142857 ….. = \(\frac { 1 }{ 7 }\)

MP Board Solutions
प्रश्न 9.
निम्नलिखित को सरल कीजिए :
(i) \(\sqrt { 45 }\) – 3\(\sqrt { 20 }\) + 4√5
(ii) \(\frac{\sqrt{24}}{8}+\frac{\sqrt{54}}{9}\)
(ii) 4√12 x 7√6
(iv) 4√28 ÷ 3√7.
हल:
(i) \(\sqrt { 45 }\) – 3\(\sqrt { 20 }\) + 4√5 = 3√5 – 6√5 + 4√5
= 7√5 – 6√5 = 5
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 15

(iii) 4√12 x 7√6 = 28√72 = 28 x 6√2 = 168√2.
(iv) 4√28 – 3√7 = 8√7 + 3√7 = 8√3.

प्रश्न 10.
यदि a = 2 + √3 है, तो a – \(\frac { 1 }{a }\) का मान ज्ञात कीजिए।
हल:
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 16
अत: a – \(\frac { 1 }{a }\) का अभीष्ट मान = 2√3.

प्रश्न 11.
निम्नलिखित में से प्रत्येक में हर का परिमेयीकरण कीजिए और फिर √2 = 1:414, √3 = 1.732 और √5 = 2:236 लेते हुए, तीन दशमलव अंक तक प्रत्येक का मान ज्ञात कीजिए:
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 17
हल:
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 17a

MP Board Solutions

MP Board Class 9th Maths Chapter 1 अति लघु उत्तरीय प्रश्न

प्रश्न 1.
मान लीजिए कि x और y क्रमशः परिमेय और अपरिमेय संख्याएँ हैं। क्या x + y आवश्यक रूप से एक अपरिमेय संख्या है ? अपने उत्तर की पुष्टि के लिए एक उदाहरण दीजिए।
उत्तर:
हाँ।
उदाहरण: मान लीजिए x = 2 एवं y = √2
x + y = 2 + 1.41421356237…….. = 3.41421356237
जो असांत एवं अनावर्ती है अत: x + y एक अपरिमेय संख्या है।

प्रश्न 2.
मान लीजिए x एक परिमेय संख्या है और । एक अपरिमेय संख्या है। क्या xy आवश्यक रूप से एक अपरिमेय संख्या है ? एक उदाहरण द्वारा अपने उत्तर का औचित्य दीजिए।
उत्तर:
नहीं।
उदाहरण : मान लीजिए x = 0 एवं y = √2 तब x.y = 0 x √2 = 0 एक परिमेय संख्या है
अत: यह आवश्यक नहीं कि xy एक अपरिमेय संख्या ही हो।

प्रश्न 3.
बताइए निम्नलिखित कथन सत्य हैं या असत्य। अपने उत्तर का औचित्य दीजिए :
(i) √2√3 एक परिमेय संख्या है।
(ii) किन्हीं दो पूर्णांकों के बीच अपरिमित रूप से अनेक पूर्णांक हैं।
(iii) 15 और 18 के बीच में परिमेय संख्याओं की संख्या परिमित है।
(iv) कुछ संख्याएँ ऐसी हैं जिन्हें p/q, q ≠ 0 के रूप में नहीं लिखा जा सकता; जहाँ p और q दोनों पूर्णांक हैं।
(v) एक अपरिमेय संख्या का वर्ग सदैव एक परिमेय संख्या होती है।
(vi) [/latex]\frac{\sqrt{12}}{\sqrt{3}}[/latex], \(\frac { p }{ q }\) ≠ 0 के रूप में लिखी है, इसलिए यह एक परिमेय संख्या है।
(vii) [/latex]\frac{\sqrt{15}}{\sqrt{3}}[/latex], \(\frac { p }{ q }\), q ≠ 0 के रूप में लिखी है, इसलिए यह एक परिमेय संख्या है।
(viii) एक संख्या x ऐसी है कि x2 अपरिमेय है और x4 परिमेय है। उदाहरण की सहायता से अपने उत्तर का औचित्य दीजिए।
उत्तर:
(i) असत्य है, क्योंकि p अर्थात् √2 पूर्णांक नहीं है।
(ii) असत्य है, क्योंकि 2 और 3 के बीच एक भी पूर्णांक नहीं है।
(iii) असत्य है, क्योंकि 15 और 18 के बीच अपरिमित परिमेय संख्याएँ हैं।
(iv) सत्य है, क्योंकि [/latex]\frac{\sqrt{2}}{\sqrt{3}}[/latex] में √2 एवं √3 पूर्णांक नहीं हैं, इसलिए इसे p/q, q ≠ 0 के रूप में नहीं लिख सकते जहाँ p एवं q पूर्णांक हों।
(v) असत्य है, क्योंकि \(((\sqrt[3]{5})^{2}=\sqrt[3]{25}\) जो अपरिमेय संख्या है।
(vi) सत्य है, क्योंकि \(\frac{\sqrt{12}}{\sqrt{3}}=\sqrt{4}=2\) एक परिमेय संख्या है, किन्तु इसलिए नहीं कि p/q के रूप में लिखी है, अपितु इसलिए कि इसको सरलतम रूप में के रूप में लिखा जा सकता है।
(vii) असत्य है, क्योंकि \(\frac{\sqrt{15}}{\sqrt{3}}=\sqrt{5}\) है जो एक अपरिमेय संख्या है।
(vii) सत्य है, क्योंकि x = [/latex]\frac{\sqrt{4}}{\sqrt{3}}[/latex] तो x2 = ( [/latex]\frac{\sqrt{4}}{\sqrt{3}}[/latex])2 = √3 एक अपरिमेय संख्या है, जबकि x4 = ( [/latex]\frac{\sqrt{4}}{\sqrt{3}}[/latex])4 = 3 एक परिमेय संख्या है।

प्रश्न 4.
औचित्य देते हुए निम्नलिखित को परिमेय या अपरिमेय संख्याओं के रूप में वर्गीकृत कीजिए:
(i) \(\sqrt { 196 }\)
(ii) 3\(\sqrt { 18 }\) ,
(iii) \(\sqrt { \frac { 9 }{ 27 } }\)
(iv) \(\frac{\sqrt{28}}{\sqrt{343}}\)
(v) – \(\sqrt { 0.4 }\),
(vi) \(\frac{\sqrt{12}}{\sqrt{75}}\),
(vi) 0.5918,
(viii) (1 + √5) – (4 + √5),
(ix) 10.124124….
(x) 1.010010001….
उत्तर:
(i) \(\sqrt { 196 }\) = 14 एक परिमेय संख्या है।
(ii) 3\(\sqrt { 18 }\) = 9√2 अपरिमेय है, क्योंकि यह परिमेय संख्या 9 एवं अपरिमेय संख्या √2 का गुणनफल है।
(iii) \(\sqrt { \frac { 9 }{ 27 } }\) = \({ \frac { 1 } { √3 } }\) अपरिमेय है, क्योंकि यह परिमेय संख्या 1 एवं अपरिमेय संख्या √3 का भागफल है।
(vi) परिमेय \(\frac{\sqrt{28}}{\sqrt{343}}=\frac{2 \sqrt{7}}{7 \sqrt{7}}=\frac{2}{7}\) संख्या है, क्योंकि यह दो परिमेय संख्याओं 2 एवं 7 का भागफल है।
(v) अपरिमेय संख्या है क्योंकि \(-\sqrt{0 \cdot 4}=\frac{-2}{\sqrt{10}}\) जो एक परिमेय संख्या – 2 एवं एक अपरिमेय संख्या √10 का भागफल है।
(vi) \(\frac{\sqrt{12}}{\sqrt{75}}=\frac{2 \sqrt{3}}{5 \sqrt{3}}=\frac{2}{5}\) एक परिमेय संख्या है क्योंकि यह दो परिमेय संख्याओं 2 एवं 5 का भागफल है।
(vii) 0.5918 परिमेय संख्या है, क्योंकि दशमलव प्रसार सांत है।
(viii) (1 + √5) – (4 + √5) = 1 + √5 – 4 – √5 = – 3 एक परिमेय संख्या है।
(ix) 10.124124 ….. एक परिमेय संख्या है क्योंकि दशमलव प्रसार असांत आवर्ती है।
(x) 1.010010001 …. एक अपरिमेय संख्या है क्योंकि दशमलव प्रसार असांत अनावर्ती है।

प्रश्न 5.
क्या ऐसी दो अपरिमेय संख्याएँ हैं जिनका योग एवं गुणनफल दोनों ही परिमेय संख्याएँ हैं। अपने उत्तर का औचित्य दीजिए।
उत्तर:
हाँ, (2 + √3) एवं (2 – √3) ऐसी संख्याएँ हैं
जिनका योग = (2 + √3) + (2 – √3) = 2 + √3 + 2 – √3 = 4 परिमेय है
तथा जिनका गुणनफल = (2 + √3)(2 – √3) = 4 – 3 = 1 परिमेय संख्या है।

प्रश्न 6.
सरल कीजिए : (5 + √7) x (5 – √7). (2019)
हल:
(5 + √7) x (5 – √7) = (5)2 – (√7)2 = 25 – 7 = 18
अतः अभीष्ट मान = 18.
MP Board Solutions

MP Board Class 9th Maths Chapter 1 बहु-विकल्पीय प्रश्न

प्रश्न 1.
प्रत्येक परिमेय संख्या है:
(a) एक प्राकृत संख्या
(b) एक पूर्णांक
(c) एक वास्तविक संख्या
(d) एक पूर्णांक संख्या।
उत्तर:
(c) एक वास्तविक संख्या

प्रश्न 2.
दो परिमेय संख्याओं के बीच में:
(a) कोई परिमेय संख्या नहीं होती
(b) ठीक एक परिमेय संख्या होती है
(c) अपरिमित रूप से अनेक परिमेय संख्याएँ होती हैं
(d) केवल परिमेय संख्याएँ होती हैं तथा कोई अपरिमेय संख्या नहीं होती।
उत्तर:
(c) अपरिमित रूप से अनेक परिमेय संख्याएँ होती हैं

प्रश्न 3.
एक परिमेय संख्या का दशमलव निरूपण नहीं हो सकता :
(a) सांत
(b) असांत
(c) असांत आवर्ती
(d) असांत अनावर्ती।
उत्तर:
(d) असांत अनावर्ती

प्रश्न 4.
किन्हीं दो अपरिमेय संख्याओं का गुणनफल होता है:
(a) सदैव एक अपरिमेय संख्या मारमय सख्या
(b) सदैव एक परिमेय संख्या
(c) सदैव एक पूर्णांक
(d) कभी परिमेय संख्या कभी अपरिमेय संख्या।
उत्तर:
(d) कभी परिमेय संख्या कभी अपरिमेय संख्या

प्रश्न 5.
संख्या √2 का दशमलव प्रसार है :
(a) एक परिमित दशमलव
(b) 1:41421
(c) असांत आवर्ती
(d) असांत अनावर्ती।
उत्तर:
(d) असांत अनावर्ती

प्रश्न 6.
निम्नलिखित में से कौन-सी एक अपरिमेय संख्या है :
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 18
उत्तर:
(c)
MP Board Solutions

प्रश्न 7.
निम्नलिखित में से कौन-सी एक अपरिमेय संख्या है :
(a) 0.14
(b) \(0.4\overline { 16 }\)
(c) \(0.\overline { 1416 }\)
(d) 0.4014001400014….
उत्तर:
(d) 0.4014001400014….

प्रश्न 8.
√2 और √3 के बीच एक परिमेय संख्या है :
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 19
उत्तर:
(c)

प्रश्न 9.
p/q के रूप में 1.999… का मान, जहाँ p और q पूर्णांक हैं तथा q ≠ 0 होगा :
(a) \(\frac { 19 }{ 18 }\)
(b) \(\frac { 1999 }{ 1000 }\)
(c) 2
(d) \(\frac { 1 }{ 9 }\)
उत्तर:
(c) 2

प्रश्न 10.
2√3 + √3 बराबर है :
(a) 2√6
(b) 6
(c) 3√5
(d) 4√6.
उत्तर:
(c) 3√5

प्रश्न 11.
√10 x √15 बराबर है :
(a) 6√5
(b) 5√6
(c) √25
(d) 10√5.
उत्तर:
(b) 5√6

प्रश्न 12.
\(\frac{1}{\sqrt{7}-2}\) के परिमेयीकरण करने पर प्राप्त संख्या है :
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 20
उत्तर:
(a)

प्रश्न 13.
\(\frac{1}{\sqrt{9}-\sqrt{8}}\) बराबर है :
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 21
उत्तर:
(d)

प्रश्न 14.
\(\frac{7}{3 \sqrt{3}-2 \sqrt{2}}\) के हर का परिमेयीकरण करने पर हमें प्राप्त हर है :
(a) 13
(b) 19
(c) 5
(d) 35
उत्तर:
(b) 19
MP Board Solutions

प्रश्न 15.
\(\frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}}\) का मान बराबर है :
(a) √2
(b) 2
(c) 4
(d) 8
उत्तर:
(b) 2

प्रश्न 16.
यदि √2 = 1.4142 है, तो \(\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\) बराबर है :
(a) 2.4142
(b) 5.8282
(c) 0.4142
(d) 0.1718.
उत्तर:
(c) 0.4142

प्रश्न 17.
\(\sqrt[4]{\sqrt[3]{2^{2}}}\) बराबर है :
(a) 2-1/6
(b) 2-6
(c) 21/6
(d) 26
उत्तर:
(c) 21/6

प्रश्न 18.
गुणनफल 12 x 4/2 x 12/32 बराबर है :
(a) √2
(b) 2
(c) \(\sqrt[2]{2}\)
(d) 1
उत्तर:
(b) 2

प्रश्न 19.
\(\sqrt[4]{(81)^{-2}}\) का मान है :
(a) \(\frac { 1 }{ 9 }\)
(b) \(\frac { 1 }{ 3 }\)
(c) 9
(d) \(\frac { 1 }{ 81 }\)
उत्तर:
(a) \(\frac { 1 }{ 9 }\)

प्रश्न 20.
(256)0.16 x (256)0.09 का मान है:
(a) 4
(b) 16
(c) 64
(d) 256.25
उत्तर:
(a) 4

प्रश्न 21.
निम्नलिखित में से कौन x के बराबर है :
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 22
उत्तर:
(c)
MP Board Solutions

प्रश्न 22.
निम्नलिखित से कौन [(5/6)1/5]-1/6 के बराबर नहीं है :
MP Board Class 9th Maths Guide Chapter 1 संख्या पद्धति Ex 1.6 23
उत्तर:
(a)

प्रश्न 23.
किसी वास्तविक संख्या का निरपेक्ष मान सदैव होता है : (2018)
(a) प्राकृत संख्या
(b) परिमेय संख्या
(c) ऋण संख्या
(d) धन संख्या।
उत्तर:
(d) धन संख्या

प्रश्न 24.
निम्न में से कौन-सी परिमेय संख्या नहीं है: (2019)
(a) \(\sqrt { 23 }\)
(b) \(\sqrt { 225 }\)
(c) \(\sqrt { 249 }\)
(d) \(5.\overline { 328 }\)
उत्तर:
(a) \(\sqrt { 23 }\)

प्रश्न 25.
निम्नलिखित में कौन-सी अपरिमेय संख्या है : (2019)
(a) 0.23
(b) 0:2023002300023 ……..
(c) \(0.23\overline { 25 }\)
(d) \(0.\overline { 2325 }\)
उत्तर:
(b) 0:2023002300023 ……..

प्रश्न 26.
am x an का मान होगा : (2019)
(a) am+n
(b) amn
(c) am-n
(d) am/n
उत्तर:
(a) am+n

रिक्त स्थानों की पूर्ति

1. सभी प्राकृत संख्याएँ एवं शून्य मिलकर ………कहलाती हैं।
2. जो संख्याएँ p/q, q ≠ 0 के रूप में व्यक्त की जा सकती हैं, जहाँ p, q पूर्णांक है, ………. कहलाती हैं।
3. जो संख्याएँ p/q, q ≠ 0 के रूप में व्यक्त नहीं की जा सकती; जहाँ p, q पूर्णांक हैं ……….. कहलाती हैं।
4. दो परिमेय संख्याओं के मध्य ……….. परिमेय संख्याएँ होती हैं। (2019)
5. दो अपरिमेय संख्याओं के मध्य ………. अपरिमेय संख्याएँ होती हैं।
6. 3√5 का करणी घात ………. है। (2018)
7. सबसे छोटी प्राकृत संख्या ……….. है। (2019)
उत्तर:
1. पूर्णांक संख्याएँ,
2. परिमेय संख्याएँ,
3. अपरिमेय संख्याएँ,
4. अनन्तत: अनेक,
5. अनन्ततः अनेक,
6. पाँच (5),
7. 1 (एक)।

जोड़ी मिलान
स्तम्भ ‘A’                                                            स्तम्भ ‘B’
1. सांत दशमलव प्रसार                              (a) वास्तविक संख्याएँ
2. अनवसानी अनावर्ती दशमलव प्रसार         (b) पूर्ण संख्याएँ
3. 8-1/3 (2019)                                       (c) परिमेय संख्या
4. सभी परिमेय एवं अपरिमेय संख्याएँ           (d) अपरिमेय संख्या
5. शून्य एवं प्राकृत संख्याएँ मिलकर              (e) 1/2
उत्तर:
1.→(c), 2.→(d), 3.→(e), 4.→(a), 5.→(b).
MP Board Solutions

सत्य/असत्य कथन

1. दो परिमेय संख्याओं का योग सदैव परिमेय होता है।
2. दो अपरिमेय संख्याओं का योग सदैव अपरिमेय होता है
3. प्रत्येक पूर्णांक परिमेय संख्या होती है।
4. प्रत्येक वास्तविक संख्या परिमेय संख्या होती है।
5. प्रत्येक अपरिमेय संख्या वास्तविक संख्या होती है।
6. \(\frac { 32 }{ 48 }\), \(\frac { 2 }{ 3 }\) के तुल्य परिमेय संख्या है। (2019)
7. √2 एक परिमेय संख्या है। (2019)
उत्तर:
1. सत्य,
2. असत्य
3. सत्य,
4. असत्य,
5. सत्य,
6. सत्य,
7. असत्य।

एक शब्द/वाक्य में उत्तर

1. am x an का सरलतम रूप क्या होगा?
2. am x bn को सरल रूप में लिखिए।
3. am ÷ an का सरल रूप लिखिए।
4. a° का मान कितना होता है ?
5. a-m को धनात्मक घातांक में लिखिए।
6. √3 का मान लिखिए। (2019)
उत्तर:
1. am+n,
2. (ab)n,
3. am-n,
4. 1,
5. (1/a)m ,
6. 1.732……. .

MP Board Class 9th Maths Solutions

MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3

MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3

प्रश्न 1.
संलग्न चित्र में ∆ABC की एक माध्यिका AD पर स्थित E कोई बिन्दु है। दर्शाइए कि
ar (ABE) = ar (ACE).
हल:
MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3 1
चित्र 9.8
चूँकि A ABC की माध्यिका AD हैं।
⇒ ar (ADB) = ar (ADC)
⇒ ar (ABE) + ar (EDB) = ar (ACE) + ar (EDC) …(1)
चूँकि A EBC की माध्यिका ED है।
⇒ ar (EDB) = ar (EDC) …(2)
अतः ar (ABE) = ar (ACE) [समीकरण (1) और (2) से] इति सिद्धम्

प्रश्न 2.
∆ABC में, E माध्यिका AD का मध्य-बिन्दु है। दर्शाइए कि-
ar (BED) = \(\frac { 1 }{ 4 }\)ar (ABC)
हल:
MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3 2
चित्र 9.9
∆ABC की माध्यिका का मध्य-बिन्दु E है।
चूँकि ∆ABC की माध्यिका AD है
⇒ ar (ADB) = \(\frac { 1 }{ 4 }\) ar (ABC) …(1) ,
चूँकि BE, ∆ADB की माध्यिका है।
⇒ ar (BED) = \(\frac { 1 }{ 2 }\) ar (ADB) …(2)
अतः ar (BED) = \(\frac { 1 }{ 4 }\)ar (ABC). [समीकरण (1) और (2) से] इति सिद्धम्

प्रश्न 3.
दर्शाइए कि समान्तर चतुर्भुज के दोनों विकर्ण उसे बराबर क्षेत्रफल वाले चार त्रिभुजों में बाँटते हैं।
हल:
MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3 3
चित्र 9.10
दिया है : ABCD एक समान्तर चतुर्भुज है जिसके विकर्ण AC और BD परस्पर बिन्दु O पर प्रतिच्छेद करते हैं।
चूँकि ar (ABC) = ar (ADC) …(1)
(विकर्ण समान्तर चतुर्भुज A को समद्विभाजित करते हैं।)
ar (OAB) = ar (OBC) = \(\frac { 1 }{ 2 }\) ar (ABC) . …(2) (BO,A ABC की माध्यिका है)
ar (ODA) = ar (OCD) = \(\frac { 1 }{ 2 }\)ar (ADC) …(3) (DO,AADC की माध्यिका है)
ar (OAB) = ar (OBC) = ar (ODA) = ar (OCD) [समीकरण (1), (2) एवं (3) से]
अतः समान्तर चतुर्भुज के दोनों विकर्ण उसे बराबर क्षेत्रफल वाले चार त्रिभुजों में बाँटते हैं इति सिद्धम्

MP Board Solutions

प्रश्न 4.
संलग्न चित्र में ABC और ABD एक ही आधार AB पर बने दो त्रिभुज हैं। यदि रेखाखण्ड CD, रेखाखण्ड AB से बिन्दु O पर समद्विभाजित होता है तो दर्शाइए कि-
ar (ABC) = ar (ABD) है।
MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3 4
चित्र 9.11
हल:
एक ही आधार AB पर दो त्रिभुज A ABC एवं A ABD दिए हैं जिसमें AB एवं CD परस्पर O बिन्दु पर समद्विभाजित करते हैं।
⇒ ADBC एक समान्तर चतुर्भुज है (विकर्ण AB, CD पर परस्पर समद्विभाजित कर रहे हैं)
CM ⊥ AB एवं DN ⊥ AB खींचिए।
अब ∆AMC और ∆BND में,
चूँकि AC = BD (समान्तर चतुर्भुज की सम्मुख भुजाएँ हैं)
∠CAM = ∠DBN (एकान्तर कोण हैं)
एवं ∠AMC = ∠BND = 90° (CM ⊥ AB एवं DN ⊥ AB)
⇒ ∆AMC = ∆BND , (AAS सर्वांगसमता प्रमेय)
⇒ CM = DN (CPCT)
चूँकि ∆ABC और ∆ABD एक ही आधार AB पर स्थित हैं तथा उनके शीर्षलम्ब CM = DN (सिद्ध कर चुके हैं)
अतः ar (ABC) = ar (ABD). इति सिद्धम्

प्रश्न 5.
D, E और F क्रमशः त्रिभुज ABC की भुजाओं BC, CA और AB के मध्य-बिन्दु हैं। दर्शाइए कि-
(i) BDEF एक समान्तर चतुर्भुज है।
(ii) ar (DEF) = \(\frac { 1 }{ 4 }\) ar (ABC).
(iii) ar (BDEF) = \(\frac { 1 }{ 2 }\)ar (ABC).
हल:
MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3 5
चित्र 9.12
दिया है : AABC की भुजाओं BC, CA और AB के मध्य-बिन्दु
क्रमश: D, E और F हैं। DE, EF एवं FD को मिलाया गया है।
(i) चूँकि D एवं E क्रमशः BC और CA के मध्य-बिन्दु हैं।
⇒ DE = \(\frac { 1 }{ 2 }\)AB एवं DE || AB
⇒ DE = FB एवं DE || FB (AB का मध्य-बिन्दु F है)
अत: BDEF एक समान्तर चतुर्भुज है। (सम्मुख भुजाओं का युग्म बराबर एवं समान्तर है) इति सिद्धम्

(ii) चूँकि BDEF एक समान्तर चतुर्भुज सिद्ध कर चुके हैं।
इसी प्रकार सिद्ध कर सकते हैं कि DCEF एवं EAFD भी समान्तर □ हैं।
चूँकि समान्तर चतुर्भुज BDEF, DCEF एवं EAFD के विकर्ण क्रमश: FD, DE एवं EF हैं, जो उनको समद्विभाजित करते हैं।
⇒ ar (DFB) = ar (DCE) = ar (EAF) = ar (DEF)
लेकिन ar (DFB) + ar (DCE) + ar (EAF) + ar (DEF) = ar (ABC)
अतः ar (DEF) = \(\frac { 1 }{ 4 }\) ar (ABC). इति सिद्धम्

(iii) ar (BDEF) = ar (DFB) + ar (DEF) (चित्रानुसार)
= 2 ar (DEF) [ar (DFB) = ar (DEF)]
= 2 x \(\frac { 1 }{ 4 }\) ar (ABC) ar (DEF) = \(\frac { 1 }{ 4 }\)ar (ABC)
अतः ar (BDEF) = \(\frac { 1 }{ 2 }\) ar (ABC). इति सिद्धम्

MP Board Solutions

प्रश्न 6.
संलग्न चित्र में चतुर्भुज ABCD के विकर्ण AC और BD परस्पर बिन्दु 0 पर इस प्रकार प्रतिच्छेद करते हैं कि OB = OD है। यदि AB = CD है, तो दर्शाइए कि-
(i) ar (DOC) = ar (AOB).
(ii) ar (DCB) = ar (ACB).
(iii) DA || CB या ABCD एक समान्तर चतुर्भुज है।
MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3 6
चित्र 9.13
हल:
दिया है : ABCD चतुर्भुज के विकर्ण AC एवं BD परस्पर बिन्दु O पर इस प्रकार प्रतिच्छेद करते हैं कि OB = OD तथा AB = CD है।
बिन्दु B एवं D से क्रमशः BE I AC एवं DF I AC खींचिए। (i) अब ADOF एवं ABOE में, OD = OB
(दिया है) ∠DOF = ∠BOE
(सम्मुख कोण हैं) ∠DFO = ∠BEO = 90° (DF ⊥ AC एवं BE ⊥AC)
⇒ ∆DOF ≅ ∆BOE (SAA सर्वांगसमता प्रमेय)…(1)
⇒ DF = BE (CPCT)
पुनः समकोण ∆DFC और समकोण ∆BEA में,
चूँकि कर्ण CD = कर्ण AB (दिया है)
DF = BE (सिद्ध कर चुके हैं)
∠DFC =∠BEA = 90° (RHS सर्वांगसमता प्रमेय) …(2)
⇒ ∆DFC ≅ ∆BEA (RHS सर्वांगसमता प्रमेय)…(2)
⇒ ∆DOF + ∆DFC = ∆BOE + ∆BEA [समीकरण (1) और (2) से]
⇒ ∆DOC = ∆AOB (चित्रानुसार)
अतः ar (DOC) = ar (AOB). (सर्वांगसम क्षेत्रों के क्षेत्रफल हैं) इति सिद्धम्

(ii) चूँकि ar (DOC) = ar (AOB) (सिद्ध कर चुके हैं)
⇒ ar (DOC) + ar (OCB) = ar (AOB) + ar (OCB) (बराबर संख्याओं में समान संख्या का योग बराबर होता है)
अतः ar (DCB) = ar (ACB). (चित्रानुसार) इति सिद्धम्

(iii) चूँकि ∆DOC ≅ ∆AOB (सिद्ध कर चुके हैं)
⇒ ∠DCO = ∠BAO (CPCT)
⇒ DC || AB (∠DCO = ∠BAO (एकान्तर कोण है).
अतः DA || CB (DC || AB एवं DC = AB)
या ABCD एक समान्तर चतुर्भुज है। (DA || CB एवं CD || AB). इति सिद्धम्

प्रश्न 7.
बिन्दु D और E क्रमश: ∆ABC की भुजाओं AB और AC पर इस प्रकार स्थित हैं कि ar (DBC) = ar (EBC) है। दर्शाइए कि DE || BC है। (2018)
हल:
MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3 7
चित्र 9.14
दिया है : ∆ABC की भुजाओं AB एवं AC पर दो बिन्दु D और E इस प्रकार हैं कि ar (DBC) = ar (EBC)
DE को मिलाइए। चूँकि ∆DBC एवं ∆EBC एक उभयनिष्ठ आधार BC पर तथा रेखाखण्ड BC एवं DE के मध्य स्थित है तथा ar (DBC) = ar (EBC)
अतः DE || BC. (एक ही आधार पर बराबर क्षेत्रफल वाले ∆ हैं) इति सिद्धम्

प्रश्न 8.
XY त्रिभुज ABC की भुजा BC के समान्तर एक रेखा है। यदि BE|| AC और CF || AB रेखा XYसे क्रमशः E और F पर मिलती हैं, तो दर्शाइए कि-ar (ABE) = ar (ACF).
हल:
MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3 8
चित्र 9.15
ABC एक दिया हुआ त्रिभुज है जिसकी भुजा BC के समान्तर
XY एक रेखा खींची जाती है जो BE || AC और CF || AB को क्रमश: E और F बिन्दुओं पर प्रतिच्छेद करती है।
BF एवं CE को मिलाइए।
चूँकि उभयनिष्ठ आधार BE पर BE || AC के मध्य ∆ABE और ∆CBE स्थित हैं।
⇒ ar (ABE) = ar (CBE) …(1)
चूँकि उभयनिष्ठ आधार CF पर CF || AB के मध्य ∆ACF और ∆BCF स्थित हैं।
⇒ ar (ACF) = ar (BCF) …(2) .
चूँकि उभयनिष्ठ आधार BC पर BC || EF के मध्य ∆CBE और ∆BCF स्थित हैं।
⇒ ar (CBE) = ar (BCF)
अतः ar (ABE) = ar (ACF).
समीकरण (1), (2) एवं (3) से] इति सिद्धम्

प्रश्न 9.
संलग्न चित्र में समान्तर चतुर्भुज ABCD की एक भुजा AB को एक बिन्दु P तक बढ़ाया गया है। A से होकर CP के समान्तर खींची गई रेखा बढ़ाई गई CB को Q पर मिलती है और फिर समान्तर चतुर्भुज PBQR को पूरा किया जाता है। दर्शाइए कि-
ar (ABCD) = ar (PBQR) है।
MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3 9
चित्र 9.16
हल:
चित्र 9.16 में ABCD एक समान्तर चतुर्भुज है। CP|| AQ है तथा PBOR भी एक समान्तर चतुर्भुज है।
AC और QP को मिलाइए।
अब उभयनिष्ठ आधार AQ पर AQ || CP के मध्य दो त्रिभुज ∆CAQ एवं ∆PAQ स्थित हैं।
⇒ ar (CAQ) = ar (PAQ)
⇒ ar (CAB) + ar (BAQ) = ar (BAQ) + ar (BQP)
⇒ ar (CAB) = ar (BQP) [ar (BAQ) उभयनिष्ठ है]
⇒\(\frac { 1 }{ 2 }\)ar (ABCD) = \(\frac { 1 }{ 2 }\)ar (PBOR)
(AC और PQ क्रमशः समान्तर चतुर्भुज ABCD और PBQR के विकर्ण हैं)
अतः ar (ABCD) = ar (PBOR). (बराबर के दोनों बराबर होते हैं) इति सिद्धम्

MP Board Solutions

प्रश्न 10.
एक समलम्ब ABCD, जिसमें AB || DC है, के विकर्ण AC और BD परस्पर O पर प्रतिच्छेद करते हैं। दर्शाइए कि ar (AOD) = ar (BOC) है।
हल:
MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3 10
चित्र 9.17
ABCD एक समलम्ब चतुर्भुज है जिसमें AB || DC तथा उसके विकर्ण AC और BD परस्पर O पर प्रतिच्छेद करते हैं।
उभयनिष्ठ आधार AB पर AB || DC के मध्य A DAB एवं ACAB स्थित हैं।
⇒ ar (DAB) = ar (CAB)
⇒ ar (AOD) + ar (OAB) = ar (OAB) + ar (BOC) (चित्रानुसार)
अतः ar (AOD) = ar (BOC). (ar (OAB) उभयनिष्ठ है) इति सिद्धम्

प्रश्न 11.
संलग्न चित्र में ABCDE एक पंचभुज है। B से होकर AC के समान्तर खींची गई रेखा बढ़ाई गई DC को F पर मिलती है। दर्शाइए कि-
(i) ar (ACB) = ar (ACF).
(ii) ar (AEDF) = ar (ABCDE).
MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3 11
चित्र 9.18
हल:
ABCDE एक पंचभुज है जिसकी भुजा DC बढ़ाई गई है।
बिन्दु B से BF || AC खींची गई है जो DC को F पर मिलती है।
(i) चूँकि उभयनिष्ठ आधार AC पर AC || BF के मध्य दो चित्र 9.18 त्रिभुज क्रमशः ∆ACB एवं ∆ACF स्थित हैं
अतः ar (ACB) = ar (ACF). इति सिद्धम्

(ii) ar (ACB) = ar (ACF) (सिद्ध कर चुके हैं)
⇒ ar (BAC) + ar (ACDE) = ar (FAC) + ar (ACDE) (बराबर संख्याओं में एक ही संख्या जोड़ने पर)
⇒ ar (ABCDE) = ar (AEDF)
⇒ ar (AEDF) = ar (ABCDE). इति सिद्धम्

प्रश्न 12.
गाँव के एक निवासी इतवारी के पास एक चतुर्भुजाकार भूखण्ड था। उस गाँव की ग्राम पंचायत ने उसके भूखण्ड के एक कोने से उसका कुछ भाग लेने का निर्णय लिया ताकि वहाँ एक स्वास्थ्य केन्द्र का निर्माण कराया जा सके। इतवारी इस प्रस्ताव को इस प्रतिबन्ध के साथ स्वीकार कर लेता है कि उसे इस भाग के बदले उसी भूखण्ड से संलग्न एक भाग ऐसा दे दिया जाए कि उसका भूखण्ड त्रिभुजाकार हो जाए। स्पष्ट कीजिए कि इस प्रस्ताव को किस प्रकार क्रियान्वित किया जा सकता है ?
MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3 12
चित्र 9.19
हल:
ग्राम निवासी के पास चतुर्भुज ABCD के आकार का भूखण्ड है। प्रतिबन्ध के साथ प्रस्ताव निम्न प्रकार क्रियान्वित किया जा सकता है-
चित्रानुसार CD को आगे बढ़ाइए। विकर्ण BD के समान्तर AE खींचिए जो CD को E पर मिलती है।
ग्रामवासी अपने भूखण्ड से भाग ABD ग्राम पंचायत को देगा तथा बदले में भूखण्ड BDE लेगा। इस प्रकार उसका भूखण्ड BCE हो जायेगा। जो त्रिभुजाकार है तथा क्षेत्रफल में मूल भूखण्ड के बराबर है। चूँकि उभयनिष्ठ आधार BD पर BD || AE के मध्य दो त्रिभुज ∆ABD एवं ∆EBD स्थित हैं।
⇒ ar (ABD) = ar (EBD)
⇒ ar (ABD) + ar (BCD) = ar (EBD) + ar (BCD) (बराबर संख्याओं में एक ही संख्या जोड़ी गई है)
अतः ar (BCE) = ar (ABCD). इति सिद्धम्

प्रश्न 13.
ABCD एक समलम्ब है जिसमें AB || DC है। AC के समान्तर रेखा AB को X पर और BC को Y पर प्रतिच्छेद करती है। सिद्ध कीजिए कि-
ar (ADX) = ar (ACY)
हल:
MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3 13
चित्र 9.20
ABCD एक समलम्ब चतुर्भुज दिया है जिसमें AB || DC एवं विकर्ण AC के समान्तर खींची गई रेखा AB को X पर और BC को Y पर प्रतिच्छेद करती है।
CX को मिलाइए।
उभयनिष्ठ आधार AX पर AX || DC के मध्य ∆ADX एवं ∆ACX स्थित हैं।
⇒ ar (ADX) = ar (ACX) …(1)
उभयनिष्ठ आधार AC पर AC || XY के मध्य ∆ACX और ∆ACY स्थित हैं।
⇒ ar (ACX) = ar (ACY) …(2)
अतः ar (ADX) = ar (AC) है। [समीकरण (1) और (2) से] इति सिद्धम्

MP Board Solutions

प्रश्न 14.
संलग्न चित्र में AP || BQ || CR है। तो, सिद्ध कीजिए कि-
ar (AQC) = ar (PBR) है।
हल:
MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3 14
चित्र 9.21
दिया है : AP || BQ || CR
विकर्ण AQ, BP, CQ, BR को मिलाया गया है।
चूँकि उभयनिष्ठ आधार BQ पर BQ || AP के मध्य ∆ABQ एवं ∆PBQ स्थित हैं।
चूँकि उभयनिष्ठ आधार BQ पर BQ || CR के मध्य ∆BCQ एवं ∆BRQ स्थित हैं।
⇒ ar (BCQ) = ar (BRQ) …(2)
⇒ ar (ABQ) + ar (BCQ) = ar (PBQ) + ar (BRQ) [समीकरण (1) एवं (2) से]
अतः ar (AQC) = ar (PBR). (चित्रानुसार) इति सिद्धम्

प्रश्न 15.
चतुर्भुज ABCD के विकर्ण AC और BD परस्पर बिन्दु O पर इस प्रकार प्रतिच्छेद करते हैं कि ar (AOD) = ar (BOC) है। सिद्ध कीजिए कि ABCD एक समलम्ब चतुर्भुज है।
हल:
MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3 15
चित्र 9.22
ABCD चतुर्भुज के विकर्ण AC और BD एक-दूसरे को बिन्दु O पर प्रतिच्छेद करते हैं,
जहाँ ar (AOD) = ar (BOC) …(1)
⇒ ar (AOD) + ar (ODC) = ar (BOC) + ar (ODC) (बराबर संख्याओं में समान संख्या का योग है)
⇒ ar (ACD) = ar (BCD)
ये दोनों त्रिभुज उभयनिष्ठ आधार CD पर दो रेखाओं DC एवं AB के मध्य स्थित हैं।
अत: AB || DC अर्थात् ABCD एक समलम्ब चतुर्भुज है। इति सिद्धम्

MP Board Solutions

प्रश्न 16.
संलग्न चित्र में ar (DRC) = ar (DPC) है और ar (BDP) = ar (ARC) है। दर्शाइए कि दोनों चतुर्भुज ABCD और DCPR समलम्ब हैं।
MP Board Class 9th Maths Solutions Chapter 9 समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल Ex 9.3 16
हल:
प्रश्नानुसार,
चूँकि ar (DRC) = ar (DPC) (दिया है)…(1)
ये दोनों त्रिभुज DRC एवं DPC उभयनिष्ठ आधार DC और दो रेखाओं DC एवं RP के मध्य स्थित हैं।
⇒ DC || RP अर्थात् □DCPR एक समलम्ब चतुर्भुज है।
चूँकि ar (BDP) = ar (ARC) (दिया है)
⇒ ar (BDC) + ar (DPC) = ar (DRC) + ar (ADC) (चित्रानुसार)…(1)
⇒ ar (BDC) = ar (ADC) [समीकरण (1) और (2) से]
ये दोनों त्रिभुज BDC एवं ADC उभयनिष्ठ आधार DC एवं दो रेखाओं DC एवं AB के मध्य स्थित हैं।
⇒ DC || AB अर्थात् चतुर्भुज ABCD एक समलम्ब चतुर्भुज है।
अतः दोनों चतुर्भुज ABCD और DCPR समलम्ब चतुर्भुज हैं। इति सिद्धम्

MP Board Class 9th Maths Solutions

MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.2

MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.2

प्रश्न 1.
आठवीं कक्षा के 30 विद्यार्थियों के रक्त समूह ये हैं :
A, B, O, O, AB, O, A, O, B, A, O, B, A, O, O, A, AB, O, A, A, O, O, AB, B, A, O, B, A, B, O.
इन आँकड़ों को एक बारम्बारता बंटन सारणी के रूप में प्रस्तुत कीजिए। बताइए कि इन विद्यर्थियों में कौन-सा रक्त समूह अधिक सामान्य है और कौन-सा रक्त समूह विरलतम रक्त समूह है ? (2019)
हल:
MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.2 image 1
अतः अधिक सामान्य रक्त समूह O है तथा सबसे विरलतम रक्त समूह AB.

प्रश्न 2.
40 इन्जीनियरों की उनके आवास से कार्य स्थल की किलोमीटर में दूरियाँ ये हैं :
5, 3, 10, 20, 25, 11, 13, 7, 12, 31, 19, 10, 12, 17, 18, 11, 32, 17, 16, 2, 7, 9 ,7,8, 3, 5, 12, 15, 18, 3, 12, 14, 2,9, 6, 15, 15, 7, 6, 12. 0-5 को, जिसमें 5 सम्मिलित नहीं है, पहला अन्तराल लेकर ऊपर दिए हुए आँकड़ों से वर्ग माप 5 वाली एक वर्गीकृत बारम्बारता बंटन सारणी बनाइए। इस सारणीबद्ध निरूपण में आपको कौन-से मुख्य लक्षण देखने को मिलते हैं ?
हल:
MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.2 image 2
अतः सर्वाधिक इन्जीनियर 5 से 10 और 10 से 15 किमी दूरी पर रहते हैं तथा सबसे कम 20 से 25, 25 से 30 एवं 30 से 35 किमी दूरी पर।

प्रश्न 3.
30 दिन वाले महीने में एक नगर की सापेक्ष आर्द्रता (% में) यह रही है :
98.1, 98.6, 99.2, 90.3, 86.5, 95.3, 92.9, 96.3, 94.2, 95.1, 89.2, 92.3, 97.1, 93.5, 92.7, 95.1, 97.2, 93.3, 95.2, 97.3, 96.2, 92.1, 84.9, 90.2, 95.7, 98.3, 97.3, 96.1, 92.1, 89.0.
(i) वर्ग 84 – 86, 86 – 88 आदि लेकर एक वर्गीकृत बारम्बारता बंटन बनाइए।
(ii) क्या आप बता सकते हैं कि ये आँकड़े किस महीने या ऋतु से सम्बन्धित हैं?
(iii) इन आँकड़ों का परिसर क्या है ?
हल :
(i) अभीष्ट बारम्बारता बंटन सारणी :
MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.2 image 3
(ii) ये आँकड़े वर्षा ऋतु के किसी महीने में लिए गए हैं क्योंकि सापेक्ष आर्द्रता अधिक है।
(iii) अभीष्ट परिसर = 99.2 – 84.9 = 14.3.

प्रश्न 4.
निकटतम सेण्टीमीटर में मापी गई 50 विद्यार्थियों की लम्बाइयाँ ये हैं :
MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.2 image 4
(i) 160 – 165, 165 – 170 आदि का वर्ग अन्तराल लेकर ऊपर दिए गए आँकड़ों को एक वर्गीकृत बारम्बारता सारणी के रूप में निरूपित कीजिए।
(ii) इस सारणी की सहायता से आप विद्यार्थियों की लम्बाइयों के सम्बन्ध में क्या निष्कर्ष निकाल सकते हैं?
हल :
(i) अभीष्ट वर्गीकृत बारम्बारता सारणी :
MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.2 image 5
(ii) उपर्युक्त सारणी से निष्कर्ष निकलता है कि 50% से अधिक छात्रों की लम्बाई 165 cm से कम है।

प्रश्न 5.
एक नगर में वायु में सल्फर डाइ ऑक्साइड का सान्द्रण का भाग प्रति मिलियन [parts per million (ppm)] में ज्ञात करने के लिए एक अध्ययन किया गया। 30 दिनों के प्राप्त किए गए आँकड़े ये हैं:
MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.2 image 6
(i) 0.00 – 0.04, 0.04 – 0.08 आदि का वर्ग अन्तराल लेकर इन आँकड़ों की एक वर्गीकृत बारम्बारता सारणी बनाइए।
(ii) सल्फर डाइ-ऑक्साइड की सान्द्रता कितने दिन 0.11 भाग प्रति मिलियन से अधिक रही?
हल :
(i) अभीष्ट वर्गीकृत बारम्बारता सारणी:
MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.2 image 7
(ii) 8 दिनों तक सल्फर डाइ-ऑक्साइड का सान्द्रण 0.11 ppm से अधिक रहा।

MP Board Solutions

प्रश्न 6.
तीन सिक्कों को एक साथ 30 बार उछाला गया। प्रत्येक बार चित (head) आने की संख्या निम्न है:
MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.2 image 8
ऊपर दिए गए आँकड़ों के लिए एक बारम्बारता बंटन सारणी बनाइए।
हल :
अभीष्ट बारम्बारता बंटन सारणी:
MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.2 6.1

प्रश्न 7.
50 दशमलव स्थान तक शुद्ध का मान नीचे दिया गया है :
3.14159265358979323846264338327950288419716939937510.
(i) दशमलव बिन्दु के बाद आने वाले 0 से 9 तक के अंकों का एक बारम्बारता बंटन बनाइए।
(ii) सबसे अधिक बार और सबसे कम बार आने वाले अंक कौन-कौन से हैं ?
हल :
(i) अभीष्ट बारम्बारता बंटन सारणी :
MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.2 image 10
(ii) सबसे अधिक बार आने वाले अंक 3 और 9 हैं एवं सबसे कम बार आने वाला अंक 0 है।

प्रश्न 8.
तीस बच्चों से यह पूछा गया कि पिछले सप्ताह उन्होंने कितने घण्टों तक टी. वी. के प्रोग्राम देखे। प्राप्त परिणाम ये रहे हैं (2019)
MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.2 image 11
(i) वर्ग चौड़ाई 5 लेकर और एक वर्ग अन्तराल को 5 – 10 लेकर इन आँकड़ों को एक वर्गीकृत बारम्बारता बंटन सारणी बनाइए।
(ii) कितने बच्चों ने सप्ताह में 15 या अधिक घण्टों तक टेलीविजन देखा ?
हल :
(i) अभीष्ट वर्गीकृत बारम्बारता बंटन सारणी :
MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.2 image 12
(ii) सप्ताह में 15 या अधिक घण्टे टेलीविजन देखने वाले बच्चे = 2.

प्रश्न 9.
एक कम्पनी एक विशेष प्रकार की कार बैटरी बनाती है। इस प्रकार की 40 बैटरियों के जीवन-काल (वर्षों में) ये रहे हैं
MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.2 image 13
0.5 माप के वर्ग अन्तराल लेकर तथा अन्तराल 2.0 – 2.5 से प्रारम्भ करके इन आँकड़ों की एक वर्गीकृत बारम्बारता बंटन सारणी बनाइए।
हल :
अभीष्ट वर्गीकृत बारम्बारता बंटन सारणी :
MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.2 image 14

MP Board Class 9th Maths Solutions

MP Board Class 9th Maths Solutions Chapter 11 रचनाएँ Ex 11.1

MP Board Class 9th Maths Solutions Chapter 11 रचनाएँ Ex 11.1

प्रश्न 1.
एक दी हुई किरण के प्रारम्भिक बिन्दु पर 90° के कोण की रचना कीजिए और कारण सहित रचना की पुष्टि कीजिए।
हल:
MP Board Class 9th Maths Solutions Chapter 11 रचनाएँ Ex 11.1 1
चित्र 11.9
रचना :
(i) किरण BC के प्रारम्भिक बिन्दु B को केन्द्र मानकर किसी त्रिज्या से एक चाप खींचिए जो BC को बिन्दु P पर प्रतिच्छेद करता है।
(ii) P को केन्द्र लेकर इसी त्रिज्या से चाप PQ काटिए।
(iii) Q को केन्द्र लेकर इसी त्रिज्या से पुनः चाप QR काटिए।
(iv) Q और R को क्रमशः केन्द्र लेकर QR के आधे से अधिक की त्रिज्या लेकर चाप खींचिए जो परस्पर A बिन्दु पर प्रतिच्छेद करते हैं।
(v) किरण BA खींचिए।
यही ∠ABC = 90° का अभीष्ट कोण है।
कारण : PQ, QR, BQ एवं BR को मिलाइए।
चूँकि BP = PQ = BQ ⇒ ∆QBP एक समबाहु त्रिभुज है। (रचना से)
⇒ OBP = 60° (समबाहु ∆ का कोण है) ….(1)
चूँकि QB = QR = BR = ∆ BQR एक समबाहु त्रिभुज है (रचना से)
⇒ ∠QBR = 60° (समबाहु ∆ का कोण है) …(2)
चूँकि किरण AB, ∠QBR का अर्द्धक है (रचना से)
⇒ ∠QBA = = x 60° = 30° ….(3)
⇒ ∠QBP + ∠QBA = 60° + 30° = 90°
समीकरण (1) + (3) से]
अतः ABC = 90°. (चित्रानुसार) इति सिद्धम्

MP Board Solutions

प्रश्न 2.
एक दी हुई किरण के प्रारम्भिक बिन्दु पर 45° के कोण की रचना कीजिए और कारण सहित रचना की पुष्टि कीजिए।
हल:
रचना :
(i) किरण BC के प्रारम्भिक बिन्दु B को केन्द्र लेकर किसी त्रिज्या से एक चाप खींचिए जो BC को बिन्दु P पर प्रतिच्छेद करता है।
(ii) Pको केन्द्र लेकर उसी त्रिज्या से एक चाप खींचिए जो पूर्व चाप को बिन्दु Q पर प्रतिच्छेद करता है।
(iii) कोण ∠PBQ की समद्विभाजक किरण BR खींचिए जो पूर्व चाप को बिन्दु S पर प्रतिच्छेद करती है।
(iv) कोण ∠ SBQ की समद्विभाजक किरण BA खींचिए।
MP Board Class 9th Maths Solutions Chapter 11 रचनाएँ Ex 11.1 2
चित्र 11.10
यही ∠ABC = 45° का अभीष्ट कोण है।
कारण : PQ एवं BQ को मिलाइए।
चूँकि BP = PQ = BQ ⇒ ∆QBP एक समबाहु त्रिभुज है। (रचना से)
⇒ ∠QBP = 60° (समबाहु A का कोण है)
चूँकि किरण BR, ∠QBP की समद्विभाजक है। (रचना से)
⇒ ∠QBR = ∠ RBC = \(\frac { 1 }{ 2 }\) QBP = \(\frac { 1 }{ 2 }\) x 60° = 30° …(1)
चूँकि किरण BA, ∠QBR की समद्विभाजक है। (रचना से)
⇒ ∠ABR = \(\frac { 1 }{ 2 }\) x ∠ QBR = \(\frac { 1 }{ 2 }\) x 30° = 15°
∠ABR + ∠RBC = 15° + 30° = 45° . [समी (1) + (2) से]
अतः ∠ABC = 45°. (चित्रानुसार)
इति सिद्धम

MP Board Solutions

प्रश्न 3.
निम्न मापों के कोणों की रचना कीजिए :
(i) 30° (2018)
(ii) 22 \(\frac { 1 }{ 2 }\)°
(iii) 15°.
हल:
MP Board Class 9th Maths Solutions Chapter 11 रचनाएँ Ex 11.1 3
चित्र 11.11
(i) रचना : (a) किरण BC खींचिए।
(b) किरण BC के प्रारम्भिक बिन्दु B को केन्द्र लेकर किसी त्रिज्या से एक चाप खींचिए जो किरण BC को बिन्द P A पर प्रतिच्छेद करता है।
(c) P को केन्द्र लेकर उसी त्रिज्या से एक चाप खींचिए जो पहले चाप को बिन्दु O पर प्रतिच्छेद करता है।
(d) कोण QBP की समद्विभाजक किरण BA खींचिए। यही ∠ABC = 30° का अभीष्ट कोण है।

(ii) रचना :
MP Board Class 9th Maths Solutions Chapter 11 रचनाएँ Ex 11.1 4
चित्र 11.12
(a) किरण BC खींचिए।
(b) B को केन्द्र लेकर किसी त्रिज्या से एक चाप खींचिए A जो BC को P पर प्रतिच्छेद करता है।
(c) P को केन्द्र लेकर उसी त्रिज्या से एक चाप खींचिए का जो पहले चाप को Q पर प्रतिच्छेद करता है।
(d) ∠OBP की समद्विभाजक किरण BR खींचिए।
(e) ∠RBC की समद्विभाजक किरण BS खींचिए।
(f) ∠ RBS की समद्विभाजक किरण BA खींचिए।
यही ∠ ABC = 22 \(\frac { 1 }{ 2 }\)° का अभीष्ट कोण है।

(iii) रचना :
MP Board Class 9th Maths Solutions Chapter 11 रचनाएँ Ex 11.1 8
चित्र 11.13
(a) किरण BC खींचिए।
(b) B को केन्द्र लेकर किसी त्रिज्या से एक चाप खींचिए जो किरण BC को P पर प्रतिच्छेद करती है।
(c) P को केन्द्र लेकर उसी त्रिज्या से एक चाप खींचिए जो पहले चाप को बिन्दु Q पर प्रतिच्छेद करता है।
(d) ∠QBP की समद्विभाजक किरण BR खींचिए।
(e) ∠RBC की समद्विभाजक किरण BA खींचिए। यही ∠ABC = 15° का अभीष्ट कोण है।

प्रश्न 4.
निम्न कोणों की रचना कीजिए और चाँदे द्वारा मापकर पुष्टि कीजिए :
(i) 75° (2019)
(ii) 1050
(iii) 135°.
हल:
(i) रचना :
MP Board Class 9th Maths Solutions Chapter 11 रचनाएँ Ex 11.1 9
चित्र 11.14
(a) किरण BC खींचिए।
(b) बिन्दु B को केन्द्र लेकर किसी त्रिज्या से एक चाप खींचिए जो BC को बिन्दु P पर प्रतिच्छेद करता है।
(c) P को केन्द्र लेकर उसी त्रिज्या से चाप PQ तथा Q को केन्द्र लेकर उसी त्रिज्या से चाप QR काटिए।
(d) ∠ RBO की समद्विभाजक किरण BS खींचिए।
(e) ∠ SBQ की समद्विभाजक किरण BA खींचिए।
यही ∠ ABC = 75° का अभीष्ट कोण है जिसकी पुष्टि चाँदे से नापने पर होती है।

(ii) रचना :
MP Board Class 9th Maths Solutions Chapter 11 रचनाएँ Ex 11.1 10
चित्र 11.15
(a) किरण BC खींचिए।
(b) B को केन्द्र लेकर किसी त्रिज्या से एक चाप खींचिए जो किरण BC को बिन्दु P पर प्रतिच्छेद करता है।
(c) P को केन्द्र लेकर उसी त्रिज्या से PQ चाप एवं ए को केन्द्र लेकर उसी त्रिज्या से QR चाप खींचिए।
(d) ∠QBR का समद्विभाजक BS खींचिए।
(e) ∠ SBR का समद्विभाजक BA खींचिए।
यही ∠ABC = 105° का अभीष्ट कोण है जिसकी पुष्टि चाँदे से नापने पर होती है।

(iii) रचना :
MP Board Class 9th Maths Solutions Chapter 11 रचनाएँ Ex 11.1 11
चित्र 11.16
(a) किरण BC खींचिए।
(b) B को केन्द्र लेकर किसी त्रिज्या से एक चाप खींचिए जो किरण BC को बिन्दु P पर प्रतिच्छेद करती है।
(c) P को केन्द्र लेकर उसी त्रिज्या से PQ, Q को केन्द्र लेकर QR एवं R को केन्द्र लेकर RS चाप खींचिए।
(d) ∠ RBS का समद्विभाजक BT खींचिए।
(e) ∠RBT का समद्विभाजक BA खींचिए।
यही ∠ABC = 135° का अभीष्ट कोण है जिसकी पुष्टि चाँदे से नापने पर होती है।

MP Board Solutions

प्रश्न 5.
एक समबाहु ∆ की रचना कीजिए जब इसकी भुजा दी हो तथा कारण सहित रचना की पुष्टि कीजिए।
हल:
रचना :
MP Board Class 9th Maths Solutions Chapter 11 रचनाएँ Ex 11.1 12
चित्र 11.17
(i) दी हुई भुजा की लम्बाई के बराबर लम्बाई का एक रेखाखण्ड BC खींचिए।
(ii) B और C को केन्द्र लेकर BC के बराबर त्रिज्या से क्रमश: चाप खींचिए जो परस्पर A बिन्दु पर प्रतिच्छेद करते हैं।
(iii) AB और AC को मिलाइए। यही ∆ABC अभीष्ट समबाहु त्रिभुज है जिसकी भुजा दी हुई है।
कारण : AB = BC = AC (रचना से)
अत: ∆ABC समबाहु ∆ है।

MP Board Class 9th Maths Solutions

MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.1

MP Board Class 9th Maths Solutions Chapter 14 सांख्यिकी Ex 14.1

प्रश्न 1.
उन आँकड़ों के पाँच उदाहरण दीजिए जिन्हें आप दैनिक जीवन में एकत्रित कर सकते हैं। (2018)
उत्तर-

  1. अपनी कक्षा में छात्रों की संख्या।
  2. अपने विद्यालय में पंखों की संख्या।
  3. पिछले दो वर्षों के घर की बिजली के बिल।
  4. टेलीविजन या समाचार पत्रों में प्राप्त चुनाव परिणाम।
  5. शैक्षिक सर्वेक्षण से प्राप्त साक्षरता दर के आँकड़े।

MP Board Solutions

प्रश्न 2.
ऊपर दिए गए प्रश्न 1 के आँकड़ों को प्राथमिक आँकड़ों या गौण आँकड़ों में वर्गीकृत करना।
उत्तर-
प्राथमिक आँकड़े : (1), (2) एवं (3)
गौण आँकड़े : (4) एवं (5).

MP Board Class 9th Maths Solutions