MP Board Class 9th Maths Solutions Chapter 11 रचनाएँ Ex 11.1
प्रश्न 1.
एक दी हुई किरण के प्रारम्भिक बिन्दु पर 90° के कोण की रचना कीजिए और कारण सहित रचना की पुष्टि कीजिए।
हल:
चित्र 11.9
रचना :
(i) किरण BC के प्रारम्भिक बिन्दु B को केन्द्र मानकर किसी त्रिज्या से एक चाप खींचिए जो BC को बिन्दु P पर प्रतिच्छेद करता है।
(ii) P को केन्द्र लेकर इसी त्रिज्या से चाप PQ काटिए।
(iii) Q को केन्द्र लेकर इसी त्रिज्या से पुनः चाप QR काटिए।
(iv) Q और R को क्रमशः केन्द्र लेकर QR के आधे से अधिक की त्रिज्या लेकर चाप खींचिए जो परस्पर A बिन्दु पर प्रतिच्छेद करते हैं।
(v) किरण BA खींचिए।
यही ∠ABC = 90° का अभीष्ट कोण है।
कारण : PQ, QR, BQ एवं BR को मिलाइए।
चूँकि BP = PQ = BQ ⇒ ∆QBP एक समबाहु त्रिभुज है। (रचना से)
⇒ OBP = 60° (समबाहु ∆ का कोण है) ….(1)
चूँकि QB = QR = BR = ∆ BQR एक समबाहु त्रिभुज है (रचना से)
⇒ ∠QBR = 60° (समबाहु ∆ का कोण है) …(2)
चूँकि किरण AB, ∠QBR का अर्द्धक है (रचना से)
⇒ ∠QBA = = x 60° = 30° ….(3)
⇒ ∠QBP + ∠QBA = 60° + 30° = 90°
समीकरण (1) + (3) से]
अतः ABC = 90°. (चित्रानुसार) इति सिद्धम्
प्रश्न 2.
एक दी हुई किरण के प्रारम्भिक बिन्दु पर 45° के कोण की रचना कीजिए और कारण सहित रचना की पुष्टि कीजिए।
हल:
रचना :
(i) किरण BC के प्रारम्भिक बिन्दु B को केन्द्र लेकर किसी त्रिज्या से एक चाप खींचिए जो BC को बिन्दु P पर प्रतिच्छेद करता है।
(ii) Pको केन्द्र लेकर उसी त्रिज्या से एक चाप खींचिए जो पूर्व चाप को बिन्दु Q पर प्रतिच्छेद करता है।
(iii) कोण ∠PBQ की समद्विभाजक किरण BR खींचिए जो पूर्व चाप को बिन्दु S पर प्रतिच्छेद करती है।
(iv) कोण ∠ SBQ की समद्विभाजक किरण BA खींचिए।
चित्र 11.10
यही ∠ABC = 45° का अभीष्ट कोण है।
कारण : PQ एवं BQ को मिलाइए।
चूँकि BP = PQ = BQ ⇒ ∆QBP एक समबाहु त्रिभुज है। (रचना से)
⇒ ∠QBP = 60° (समबाहु A का कोण है)
चूँकि किरण BR, ∠QBP की समद्विभाजक है। (रचना से)
⇒ ∠QBR = ∠ RBC = \(\frac { 1 }{ 2 }\) QBP = \(\frac { 1 }{ 2 }\) x 60° = 30° …(1)
चूँकि किरण BA, ∠QBR की समद्विभाजक है। (रचना से)
⇒ ∠ABR = \(\frac { 1 }{ 2 }\) x ∠ QBR = \(\frac { 1 }{ 2 }\) x 30° = 15°
∠ABR + ∠RBC = 15° + 30° = 45° . [समी (1) + (2) से]
अतः ∠ABC = 45°. (चित्रानुसार)
इति सिद्धम
प्रश्न 3.
निम्न मापों के कोणों की रचना कीजिए :
(i) 30° (2018)
(ii) 22 \(\frac { 1 }{ 2 }\)°
(iii) 15°.
हल:
चित्र 11.11
(i) रचना : (a) किरण BC खींचिए।
(b) किरण BC के प्रारम्भिक बिन्दु B को केन्द्र लेकर किसी त्रिज्या से एक चाप खींचिए जो किरण BC को बिन्द P A पर प्रतिच्छेद करता है।
(c) P को केन्द्र लेकर उसी त्रिज्या से एक चाप खींचिए जो पहले चाप को बिन्दु O पर प्रतिच्छेद करता है।
(d) कोण QBP की समद्विभाजक किरण BA खींचिए। यही ∠ABC = 30° का अभीष्ट कोण है।
(ii) रचना :
चित्र 11.12
(a) किरण BC खींचिए।
(b) B को केन्द्र लेकर किसी त्रिज्या से एक चाप खींचिए A जो BC को P पर प्रतिच्छेद करता है।
(c) P को केन्द्र लेकर उसी त्रिज्या से एक चाप खींचिए का जो पहले चाप को Q पर प्रतिच्छेद करता है।
(d) ∠OBP की समद्विभाजक किरण BR खींचिए।
(e) ∠RBC की समद्विभाजक किरण BS खींचिए।
(f) ∠ RBS की समद्विभाजक किरण BA खींचिए।
यही ∠ ABC = 22 \(\frac { 1 }{ 2 }\)° का अभीष्ट कोण है।
(iii) रचना :
चित्र 11.13
(a) किरण BC खींचिए।
(b) B को केन्द्र लेकर किसी त्रिज्या से एक चाप खींचिए जो किरण BC को P पर प्रतिच्छेद करती है।
(c) P को केन्द्र लेकर उसी त्रिज्या से एक चाप खींचिए जो पहले चाप को बिन्दु Q पर प्रतिच्छेद करता है।
(d) ∠QBP की समद्विभाजक किरण BR खींचिए।
(e) ∠RBC की समद्विभाजक किरण BA खींचिए। यही ∠ABC = 15° का अभीष्ट कोण है।
प्रश्न 4.
निम्न कोणों की रचना कीजिए और चाँदे द्वारा मापकर पुष्टि कीजिए :
(i) 75° (2019)
(ii) 1050
(iii) 135°.
हल:
(i) रचना :
चित्र 11.14
(a) किरण BC खींचिए।
(b) बिन्दु B को केन्द्र लेकर किसी त्रिज्या से एक चाप खींचिए जो BC को बिन्दु P पर प्रतिच्छेद करता है।
(c) P को केन्द्र लेकर उसी त्रिज्या से चाप PQ तथा Q को केन्द्र लेकर उसी त्रिज्या से चाप QR काटिए।
(d) ∠ RBO की समद्विभाजक किरण BS खींचिए।
(e) ∠ SBQ की समद्विभाजक किरण BA खींचिए।
यही ∠ ABC = 75° का अभीष्ट कोण है जिसकी पुष्टि चाँदे से नापने पर होती है।
(ii) रचना :
चित्र 11.15
(a) किरण BC खींचिए।
(b) B को केन्द्र लेकर किसी त्रिज्या से एक चाप खींचिए जो किरण BC को बिन्दु P पर प्रतिच्छेद करता है।
(c) P को केन्द्र लेकर उसी त्रिज्या से PQ चाप एवं ए को केन्द्र लेकर उसी त्रिज्या से QR चाप खींचिए।
(d) ∠QBR का समद्विभाजक BS खींचिए।
(e) ∠ SBR का समद्विभाजक BA खींचिए।
यही ∠ABC = 105° का अभीष्ट कोण है जिसकी पुष्टि चाँदे से नापने पर होती है।
(iii) रचना :
चित्र 11.16
(a) किरण BC खींचिए।
(b) B को केन्द्र लेकर किसी त्रिज्या से एक चाप खींचिए जो किरण BC को बिन्दु P पर प्रतिच्छेद करती है।
(c) P को केन्द्र लेकर उसी त्रिज्या से PQ, Q को केन्द्र लेकर QR एवं R को केन्द्र लेकर RS चाप खींचिए।
(d) ∠ RBS का समद्विभाजक BT खींचिए।
(e) ∠RBT का समद्विभाजक BA खींचिए।
यही ∠ABC = 135° का अभीष्ट कोण है जिसकी पुष्टि चाँदे से नापने पर होती है।
प्रश्न 5.
एक समबाहु ∆ की रचना कीजिए जब इसकी भुजा दी हो तथा कारण सहित रचना की पुष्टि कीजिए।
हल:
रचना :
चित्र 11.17
(i) दी हुई भुजा की लम्बाई के बराबर लम्बाई का एक रेखाखण्ड BC खींचिए।
(ii) B और C को केन्द्र लेकर BC के बराबर त्रिज्या से क्रमश: चाप खींचिए जो परस्पर A बिन्दु पर प्रतिच्छेद करते हैं।
(iii) AB और AC को मिलाइए। यही ∆ABC अभीष्ट समबाहु त्रिभुज है जिसकी भुजा दी हुई है।
कारण : AB = BC = AC (रचना से)
अत: ∆ABC समबाहु ∆ है।