MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

त्रि-विमीय ज्यामिति Important Questions

त्रि-विमीय ज्यामिति वस्तुनिष्ठ प्रश्न

प्रश्न 1.
सही विकल्प चुनकर लिखिए –

प्रश्न 1.
बिन्दुओं A (- 2, 4, 7) तथा Q (3,- 5, 8) को मिलाने वाले रेखा खण्ड को YZ समतल किस अनुपात में विभाजित करता है –
(a) 2 : 3
(b) 1 : 2
(c) 2 : 5
(d) 3 : 4.
उत्तर:
(a) 2 : 3

प्रश्न 2.
यदि कोई रेखा X अक्ष व Y अक्ष दोनों की धनात्मक दिशाओं से \(\frac { \pi }{ 4 } \) का कोण बनाये तो वह कोण जो रेखा Z – अक्ष की धनात्मक दिशा से बनाती है। होगी –
(a) \(\frac { \pi }{ 2 } \)
(b) \(\frac { \pi }{ 3 } \)
(c) \(\frac { \pi }{ 4 } \)
(d) \(\frac { \pi }{ 2 } \)
उत्तर:
(d) \(\frac { \pi }{ 2 } \)

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 3.
बिंदुओं (2, 3, 4) तथा (1, -2, 3) से गुजरने वाली रेखा का समीकरण होगा –
(a) \(\frac{x-2}{1}\) = \(\frac{y-3}{-5}\) = \(\frac{z-4}{-1}\)
(b) \(\frac{x-2}{-1}\) = \(\frac{y-3}{-5}\) = \(\frac{z-4}{-1}\)
(c) \(\frac{x-2}{-1}\) = \(\frac{y-3}{5}\) = \(\frac{z-4}{-1}\)
(d) \(\frac{x-2}{-1}\) = \(\frac{y-3}{-5}\) = \(\frac{z-4}{1}\)
उत्तर:
(b) \(\frac{x-2}{-1}\) = \(\frac{y-3}{-5}\) = \(\frac{z-4}{-1}\)

प्रश्न 4.
समतल x + 2y + z + 7 = 0 तथा 2x + y – z + 13 = 0 के बीच का कोण है –
(a) \(\frac { \pi }{ 2 } \)
(b) \(\frac { \pi }{ 3 } \)
(c) \(\frac { 3\pi }{ 2 } \)
(d) π
उत्तर:
(b) \(\frac { \pi }{ 3 } \)

प्रश्न 5.
अक्षों से 2, 3, – 4 के अन्तःखण्ड काटने वाले समतल का समीकरण है –
(a) \(\frac{x}{2}\) + \(\frac{y}{3}\) – \(\frac{z}{4}\) = 0
(b) \(\frac{x}{2}\) + \(\frac{y}{3}\) – \(\frac{z}{4}\) = -1
(c) \(\frac{x}{2}\) + \(\frac{y}{3}\) – \(\frac{z}{4}\) = 1
(d) इनमें से कोई नहीं।
उत्तर:
(c) \(\frac{x}{2}\) + \(\frac{y}{3}\) – \(\frac{z}{4}\) = 1

प्रश्न 2.
रिक्त स्थानों की पूर्ति कीजिये –

  • \(\frac { 1 }{ \sqrt { 14 } } \) ( \(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \) ) एकांक सदिश की दिक् – कोज्याएँ …………………… हैं।
  • X – अक्ष की दिक् – कोज्याएँ …………………………. हैं।
  • घन के विकर्णों के बीच का कोण …………………………. होता है।
  • सरल रेखाओं \(\frac{x}{1}\) = 0 \(\frac{y}{0}\) = \(\frac{z}{-1}\) तथा \(\frac{x}{3}\) = \(\frac{y}{4}\) = \(\frac{z}{5}\) के बीच का कोण ……………………… है।
  • यदि रेखाएँ \(\frac{x-2}{3}\) = \(\frac{y-3}{4}\) = \(\frac{z-4}{k}\) और \(\frac{x-2}{3}\) = \(\frac{y-3}{4}\) = \(\frac{z-4}{k}\) समतलीय है, तो k …………………………..
  • यदि एक रेखा अक्षों के साथ क्रमशः α, β, γ कोण बनाती है, तो cos2α + cos2β + cos2γ = ……………………………….. होगा।
  • समतल 2x + y – z = 5 द्वारा X – अक्ष पर काटा गया अंत: खण्ड ………………………… है।

उत्तर:

  1. \(\frac { 1 }{ \sqrt { 14 } } \), \(\frac { 2 }{ \sqrt { 14 } } \), \(\frac { 3 }{ \sqrt { 14 } } \)
  2. 1, 0, 0
  3. cos-1 ( \(\frac{1}{3}\) )
  4. cos-1 ( \(\frac{-1}{5}\) )
  5. 5
  6. 1
  7. \(\frac{5}{2}\) )

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 3.
निम्न कथनों में सत्य/असत्य बताइए –

  1. बिन्दु A (1, 2, 3), B (4, 0, 4) तथा C (-2, 4, 2) संरेख हैं।
  2. रेखाएँ जिनके दिक् – अनुपात (3, 4, 5) और (4, -3, 5) हैं, के बीच का कोण 30° है।
  3. रेखाओं 2x = 3y = -z तथा 6x = -y = -4z के बीच कोण 90° है।
  4. दो प्रतिच्छेदी रेखाओं के बीच की न्यूनतम दूरी सदैव 0 होती है।
  5. सरल रेखा \(\frac{x+1}{3}\) = \(\frac{y+1}{2}\) = \(\frac{z+2}{4}\) तब समताल के बीच का कोण cos-1 ( \(\frac { 4 }{ \sqrt { 406 } } \) ) है।
  6. सरल रेखा \(\frac{x-2}{1}\) = \(\frac{y+1}{-2}\) = \(\frac{z-4}{1}\) तथा समतल x + 3y + 5z = 4 के समान्तर है।
  7. X – अक्ष के समान्तर समतल का समीकरण ax + by + d = 0

उत्तर:

  1. सत्य
  2. असत्य
  3. सत्य
  4. सत्य
  5. असत्य
  6. सत्य
  7. असत्य।

प्रश्न 4.
सही जोड़ी बनाइए –
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 1
उत्तर:

  1. (c)
  2. (d)
  3. (a)
  4. (b)
  5. (e).

II.
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 2
उत्तर:
(a) (v)
(b) (iii)
(c) (ii)
(d) (vi)
(e) (iv).

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 5.
एक शब्द/वाक्य में उत्तर दीजिए –

  1. समतल x + 2y + 3z +4 = 0 के अभिलम्ब के दिक् अनुपात ज्ञात कीजिए।
  2. समतल का समीकरण ज्ञात कीजिए जो अक्षों से इकाई अंत:खण्ड काटता हो।
  3. समतल YOZ पर लम्बवत् समतल का समीकरण ज्ञात कीजिए।
  4. समतलों x + 2y + z + 7 = 0 तथा 2x + y – z + 13 = 0 के बीच का कोण ज्ञात कीजिए।
  5. समान्तर समतलों 2x – 2y + z + 3 = 0 और 4x – 4y + 2z + 5 = 0 के मध्य दूरी ज्ञात कीजिए।
  6. रेखाओं x = 2 = 2 और = 2 = – के मध्य कोण ज्ञात कीजिए।
  7. यदि कोई रेखा अक्षों की धनात्मक दिशाओं से α, β, γ कोण बनाए तो sin2α + sin2β + sin2γ का मान ज्ञात कीजिए।

उत्तर:

  1. 1, 2, 3
  2. x + y + z = 1
  3. by + cz + d = 0
  4. \(\frac { \pi }{ 3 } \)
  5. \(\frac{1}{6}\)
  6. \(\frac { \pi }{ 3 } \)
  7. 2

त्रि-विमीय ज्यामिति लघु उत्तरीय प्रश्न

प्रश्न 1.
दो बिन्दुओं (-2, 4, -5) और (1, 2, 3) को मिलाने वाली रेखा की दिक् कोसाइन ज्ञात कीजिए। (NCERT)
हल:
दिये गये बिन्दु A (-2, 4, -5) तथा B (1, 2, 3) हैं
AB दिक् अनुपात = 1 + 2, 2 – 4, 3 + 5
= 3, -2, 8
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 3
AB की दिक् कोज्यायें
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 4

प्रश्न 2.
एक रेखा X, Y और Z – अक्ष के साथ क्रमश: 90°, 135° और 45° के कोण बनाती है तो इसकी दिक् कोसाइन ज्ञात कीजिए। (NCERT)
हल:
दिया है:
α = 90°, β = 135°, λ = 45°
cos α = cos 90° = 0
cos β = cos 135° = cos (90° + 45°)
= – sin 45° = – \(\frac { 1 }{ \sqrt { 2 } } \)
cos γ = cos 45° = \(\frac { 1 }{ \sqrt { 2 } } \)
रेखा की दिक् कोसाइन cos α, cos β, cos γ
अर्थात् 0, – \(\frac { 1 }{ \sqrt { 2 } } \), \(\frac { 1 }{ \sqrt { 2 } } \).

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 3.
एक रेखा OP, X – अक्ष से 120° और Y – अक्ष से 60° का कोण बनाती है। रेखा द्वारा Z – अक्ष से बना कोण ज्ञात कीजिए।
हल:
यहाँ α = 120° और β = 60°. माना रेखा Z – अक्ष से कोण γ बनाती है। तब,
cos2 α + cos2 β + cos2 γ = 1
⇒ cos2 120° + cos2 60° + cos2 γ = 1
⇒ ( \(\frac{1}{2}\) )2 + ( \(\frac{1}{2}\) )2 + cos2 γ = 1
⇒ \(\frac{1}{4}\) + \(\frac{1}{4}\) + cos2 γ = 1
⇒ cos2 γ = 1 – \(\frac{1}{2}\) ⇒ cos2 γ = \(\frac{1}{2}\)
⇒ cos γ = ± \(\frac { 1 }{ \sqrt { 2 } } \)
⇒ γ = 45°, 135°
अत: अभीष्ट कोण 45° अथवा 1350 है।

प्रश्न 4.
दर्शाइए कि बिन्दु (2, 3, 4), (-1, -2, 1) और (5, 8, 7) संरेख हैं। (NCERT)
हल:
माना दिये गये बिन्दु A (2, 3, 4), B (-1, -2, 1) तथा C (5, 8, 7) हैं।
AB के दिक् अनुपात हैं: x2 – x1, y2 – y1, z2 – z1
अर्थात् -1 – 2, -2 – 3, 1 – 4
अर्थात् -3, -5, -3 = – (3, 5, 3)
BC के दिक् अनुपात हैं: x2 – x1, Y2 – y1, z2 – z1
अर्थात् 5 + 1, 8 + 2, 7 – 1
अर्थात्
6, 10, 6 = 2 (3, 5, 3)
स्पष्ट है कि AB और BC के दिक् अनुपात समानुपाती हैं। अत: AB और BC समान्तर हैं। परन्तु AB और BC दोनों में B उभयनिष्ठ है।
अत: A, B, C संरेख हैं। यही सिद्ध करना था।

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 5.
यदि किसी सरल रेखा की दिक्-कोज्याएँ cos α, cos β, cos γ हों, तो सिद्ध कीजिए कि
cos 2α + cos 2β + cos 2γ = -1. (म.प्र. 2008)
हल:
cos 2α + cos 2β + cos 2γ
= 2 cos2 α – 1 + 2 cos2 β – 1 + 2 cos2 γ – 1
= 2(cos2 α + cos2 β + cos2γ) – 3
= 2 × 1 – 3, [∵ cos2 α + cos2 β + cos2γ = 1]
= – 1 = R.H.S. यही सिद्ध करना था।

प्रश्न 6.
दर्शाइए कि बिन्दुओं (1, -1, 2) और (3, 4, -2) से होकर जाने वाली रेखा बिन्दुओं (0, 3, 2) और (3, 5, 6) से होकर जाने वाली रेखा के लम्बवत् है। (NCERT)
हल:
बिन्दुओं (1, -1, 2) और (3, 4, -2) से होकर जाने वाली रेखा के दिक् अनुपात
= 3 – 1, 4 + 1, -2 – 2
= 2, 5, -4 = a1, b1, C1, (माना)
बिन्दुओं (0, 3, 2) और (3, 5, 6) से होकर जाने वाली रेखा के दिक् अनुपात
= 3 – 0, 5 – 3, 6 – 2
= 3, 2, 4
= a2, b2, c2 (माना) यदि रेखायें परस्पर लम्बवत् हैं तो
⇒ a1a2 + b1b2 + c1c2 = 0
⇒ 2.3 + 5.2 – 4.4 = 0
⇒ 16 – 16 = 0
⇒ 0 = 0. यही सिद्ध करना था।
अतः रेखायें परस्पर लम्बवत् हैं।

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 7.
दर्शाइए कि बिन्दुओं A (1, 2, 3) और B (2, 3, 5) से होकर जाने वाली रेखा, बिन्दुओं C (-1, 2, -3) और D (1, 4, 1) से होकर जाने वाली रेखा के समान्तर है।
हल:
रेखा AB के दिक् अनुपात
= 2 – 1, 3 – 2, 5 – 3
= 1, 1, 2
= a1, b2, c1
रेखा CD के दिक् अनुपात
= 1 + 1, 4 – 2, 1 + 3
= 2, 2, 4
= a2, b2, c2
यहाँ
\(\frac { a_{ 1 } }{ a_{ 2 } } \) = \(\frac { b_{ 1 } }{ b_{ 2 } } \) = \(\frac { c_{ 1 } }{ c_{ 2 } } \)
= \(\frac{1}{2}\) = \(\frac{1}{2}\) = \(\frac{2}{4}\) था \(\frac{1}{2}\)
अत: रेखा AB, CD के समान्तर है।

प्रश्न 8.
रेखाओं \(\frac{x}{2}\) = \(\frac{y}{2}\) = \(\frac{z}{1}\) और \(\frac{x-5}{4}\) = \(\frac{y-2}{1}\) = \(\frac{z-3}{8}\) के बीच का कोण ज्ञात कीजिए। (NCERT)
हल:
रेखाओं के समीकरण है –
\(\frac{x}{2}\) = \(\frac{y}{2}\) = \(\frac{z}{1}\)
तथा
\(\frac{x-5}{4}\) = \(\frac{y-2}{1}\) = \(\frac{z-3}{8}\)
a1 = 2, b1 = 2, c1 = 1
a2 = 4, b2 = 1, c2 = 8
माना रेखाओं के बीच का कोण θ है।
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 5

प्रश्न 9.
सिद्ध कीजिए कि रेखाएँ \(\frac{x-5}{7}\) = \(\frac{y+2}{-5}\) = \(\frac{z}{1}\) और \(\frac{x}{1}\) = \(\frac{y}{2}\) = \(\frac{z}{3}\) परस्पर लंब हैं। (NCERT)
हल:
रेखाओं के समीकरण हैं –
\(\frac{x-5}{7}\) = \(\frac{y+2}{-5}\) = \(\frac{z}{1}\) ……………….. (1)
तथा \(\frac{x}{1}\) = \(\frac{y}{2}\) = \(\frac{z}{3}\) ……………………… (2)
यहाँ
a1 = 7, b1 = -5, c1 = 1
a2 = 1, b2 = 2, c2 = 3
a1a2 + b1b2 + c1c2 = 7(1) + (-5)(2) + 1 × 3
= 10 – 10 = 0 यही सिद्ध करना था।
अतः दी गई रेखाएँ परस्पर लम्बवत होंगी। यही सिद्ध करना था।

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 10.
उस रेखा का कार्तीय समीकरण ज्ञात कीजिए जो बिन्दु (-2, 4, -5) से जाती है और \(\frac{x+3}{3}\) = \(\frac{y-4}{5}\) = \(\frac{z+8}{8}\) के समान्तर है। (NCERT)
हल:
रेखा का समीकरण है –
\(\frac{x+3}{3}\) = \(\frac{y-4}{5}\) = \(\frac{z+8}{8}\) ………………………. (1)
रेखा (1) के दिक् अनुपात 3, 5, 8 हैं।
बिन्दु (-2, 4, -5) से जाने वाली रेखा का समीकरण
\(\frac{x+2}{a}\) = \(\frac{y-4}{b}\) = \(\frac{z+5}{c}\)
रेखा (2) के दिक् अनुपात a, b, c
रेखा (1) और (2) समान्तर है,
∴ \(\frac{a}{3}\) = \(\frac{b}{5}\) = \(\frac{c}{8}\) = k
a = 3k, b = 5k, c = 8k
a, b, c के मान समी. (2) में रखने पर रेखा का अभीष्ट समीकरण होगा –
\(\frac{x+2}{3k}\) = \(\frac{y-4}{5k}\) = \(\frac{z+5}{8k}\)
\(\frac{x+2}{3}\) = \(\frac{y-4}{5}\) = \(\frac{z+5}{8}\)

प्रश्न 11.
उस सरल रेखा का समीकरण ज्ञात कीजिए जो बिन्दु (1, 2, 3) से होकर जाती है तथा रेखा \(\frac{x-6}{12}\) = \(\frac{y-2}{4}\) = \(\frac{z+7}{5}\) के समान्तर है।
हल:
बिन्दु (x1, y1, z1) से होकर जाने वाली रेखा का समीकरण जिसके दिक् अनुपात a, b, c हैं, होता हैं –
हल:
बिन्दु (x1, y1, z1) से होकर जाने वाली रेखा का समीकरण जिसके दिक् अनुपात a, b, c हैं, होता हैं –
\(\frac { x-x_{ 1 } }{ a } \) = \(\frac { y-y_{ 1 } }{ b } \) = \(\frac { z-z_{ 1 } }{ c } \)
बिंदु (1, 2, 3) से होकर जाने वाली रेखा का समीकरण होगा –
\(\frac{x-1}{a}\) = \(\frac{y-2}{b}\) = \(\frac{z-3}{c}\)
दी गई रेखा का समीकरण है –
\(\frac{x-6}{12}\) = \(\frac{y-2}{4}\) = \(\frac{z+7}{5}\)
रेखा (2) के दिक् अनुपात हैं – 12, 4, 5
∵ रेखा (1) और (2) समान्तर हैं,
∴ \(\frac{a}{12}\) = \(\frac{b}{4}\) = \(\frac{c}{5}\) = k (माना)
⇒ a = 12k, b = 4k, c = 5k
a, b, c के मान समी. (1) में रखने पर,
\(\frac{x-1}{12k}\) = \(\frac{y-2}{4k}\) = \(\frac{z-3}{5k}\)
⇒ \(\frac{x-1}{12}\) = \(\frac{y-2}{4}\) = \(\frac{z-3}{5}\)
यही अभीष्ट रेखा का समीकरण है।

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 12.
रेखाओं \(\frac{x}{1}\) = \(\frac{y}{0}\) = \(\frac{z}{3}\) और \(\frac{x}{4}\) = \(\frac{y}{5}\) = \(\frac{z}{0}\) के बीच का कोण ज्ञात कीजिए।
हल:
दी हुई रेखाओं के समीकरण हैं:
\(\frac{x}{1}\) = \(\frac{y}{0}\) = \(\frac{z}{3}\) ………………….. (1)
और \(\frac{x}{4}\) = \(\frac{y}{5}\) = \(\frac{z}{0}\) ………………………. (2)
यहाँ a1 = 1, b1 = 0, c1 = 3 तथा a2 = 4, b2 = 5, C2 = 0 ……………….. (2)
माना कि रेखाओं (1) तथा (2) के बीच का कोण है, तब
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 6
अत: अभीष्ट कोण θ = cos-1 ( \(\frac { 4 }{ \sqrt { 410 } } \) )

प्रश्न 13.
प्रतिबन्ध ज्ञात कीजिए कि रेखाएँ x = ay + b, z = cy + d और x = a’y + b’,z = c’y + d’ परस्पर लम्ब हैं।
हल:
x = ay + b तथा z = cy + d
⇒ \(\frac{x-b}{a}\) = \(\frac{y}{1}\) तथा \(\frac{z-d}{c}\) = \(\frac{y}{1}\)
अतः उपर्युक्त रेखा का समीकरण है:
\(\frac{x-b}{a}\) = \(\frac{y}{1}\) = \(\frac{z-d}{c}\)
पुनः x = a’y + b’ तथा z = c’y + d’ से प्रदर्शित रेखा है:
\(\frac { x-b’ }{ a’ } \) = \(\frac{y}{1}\) = \(\frac { z-d’ }{ c’ } \)
यदि रेखाएँ (1) और (2) परस्पर लम्ब होंगी, तब
a × a’ + 1 × 1 + c × c’ = 0
⇒ aa’ + cc’ + 1 = 0
यही अभीष्ट प्रतिबन्ध है।

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 14.
(A) सरल रेखाओं \(\vec { r } \) = ( \(\hat { i } \) + 3\(\hat { j } \) + 5\(\hat { k } \) ) + t( \(\hat { i } \) – 2\(\hat { j } \) – 3\(\hat { k } \) ) और \(\vec { r } \) = ( \(\hat { i } \) – 2\(\hat { j } \) + 5\(\hat { k } \) ) + s(2\(\hat { i } \) – 2\(\hat { j } \) + \(\hat { k } \) ) के बीच का कोण ज्ञात कीजिए।
हल:
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 7
समी. (1) में, \(\overrightarrow{b_{1}}\) = \(\hat { i } \) – 2\(\hat { j } \) – 3\(\hat { k } \)
समी. (2) में, \(\overrightarrow{b_{2}}\) = 2\(\hat { i } \) – 2\(\hat { j } \) + \(\hat { k } \)
यदि रेखाओं के बीच का कोण θ है,
तो
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 8

(B) दो सरल रेखाओं \(\vec { r } \) = (3\(\hat { i } \) + 4\(\hat { j } \) – 2\(\hat { k } \) ) + t(-\(\hat { i } \) + 2\(\hat { j } \) + \(\hat { k } \) ) और \(\vec { r } \) = ( \(\hat { i } \) – 7\(\hat { j } \) – 2\(\hat { k } \) ) + s( \(\hat { i } \) + 3\(\hat { j } \) + 2\(\hat { k } \) ) के बीच का कोण ज्ञात कीजिए।
हल:
प्रश्न क्र. 14 (A) की भाँति हल करें।

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 15.
दो समतलों 2x – y + z = 6 और x + y + 2z = 7 के बीच का कोण ज्ञात कीजिए।
हल:
दिये गये समतल के समीकरण हैं:
2x – y + z = 6 ……………………. (1)
और x + y + 2z = 7 ……………………. (2)
समतल (1) के दिक् – अनुपात = 2, – 1, 1 ⇒ A1, B1, C1
समतल (2) के दिक् – अनुपात = 1, 1, 2 ⇒ A2, B2, C2
माना समतलों के बीच का कोण θ है। अतः
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 9
⇒ cos θ = \(\frac{3}{6}\) = \(\frac{1}{2}\) = cos \(\frac { \pi }{ 3 } \)
∴ θ = \(\frac { \pi }{ 3 } \)

प्रश्न 16.
(A) यदि तल 3x – 6y – 22 = 7 तथा 2x + y – kz = 5 एक – दूसरे पर लम्ब हों, तो k का मान ज्ञात कीजिए।
हल:
दिये गए समतलों के समीकरण हैं:
3x – 6y – 2z = 7 ……………………… (1)
तथा 2x + y – kz = 5 ………………………… (2)
यहाँ a1 = 3, b1 = -6, c1 = -2 और a2 = 2, b2 = 1, C2 = -k.
समतल (1) और (2) परस्पर लम्ब होंगे यदि
a1a2 + b1b2 + c1c2 = 0
⇒ (3)(2) + (-6)(1) + (-2)(-k) = 0
⇒ 6 – 6 + 2k = 0
⇒ 2k = 0
⇒ k = 0

(B) k के किस मान के लिए समतल 2x + ky + z + 9 = 0 और 5x + 3y – 4z – 6 = 0 पर लम्बवत् हैं।
हल:
प्रश्न क्रमांक 16 (A) की भाँति हल कीजिये।
उत्तर: k = -2.

(C) सिद्ध कीजिए कि समतल x + 2y + 3z = 6 और 3x – 3y + x = 1 परस्पर लम्बवत् हैं।
हल:
दिये गये समतलों के समीकरण हैं:
x + 2y + 3z = 36 ……………….. (1)
तथा 3x – 3y + z = 1 ……………………….. (2)
समतल (1) के अभिलम्ब के दिक् – अनुपात 1, 2, 3 हैं।
समतल (2) के अभिलम्ब के दिक्-अनुपात 3, -3, 1 हैं।
∴ a1a2 + b1b2 + c1c2 = (1)(3) + 2(-3) + (3)(1)
= 3 – 6 + 3 = 0
अतः दिये गये समतल (1) और (2) परस्पर लम्बवत् हैं। यही सिद्ध करना था।

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 17.
एक समतल निर्देशांक अक्षों को A, B और C पर काटता है। यदि त्रिभुज ABC का केन्द्रक (2,- 1, 3) है, तो समतल का समीकरण ज्ञात कीजिए।
हल:
माना A (a, 0, 0), B (0, b, 0), C (0, 0, c).
∵ OA = a, OB = b, OC = c
दिया है:
केन्द्रक (2, – 1, 3)
∴ \(\frac { a+0+0 }{ 3 } \) = 2 ⇒ a = 6
⇒ \(\frac { a+0+0 }{ 3 } \) = -1 ⇒ b = -3
तथा \(\frac { 0+0+0 }{ 3 } \) = 3 ⇒ c = 9
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 10
∴ समतल का समीकरण \(\frac{x}{a}\) + \(\frac{y}{b}\) + \(\frac{z}{c}\) = 1
⇒ \(\frac{x}{6}\) + \(\frac{y}{-3}\) + \(\frac{z}{9}\) = 1
⇒ \(\frac{27x-54y+18z}{162}\) = 1 ⇒ 3x – 6y + 2z = 18.

प्रश्न 18.
एक समतल निर्देशांक अक्षों को A, B और C पर काटता है। यदि त्रिभुज ABC का केन्द्रक (a, b, c) है। सिद्ध कीजिए कि समतल का समीकरण \(\frac{x}{a}\) + \(\frac{y}{b}\) + \(\frac{z}{c}\) = 3 हैं।
हल:
चित्र से OA = α, OB = β, OC = γ
केन्द्रक \(\frac { \alpha +0+0 }{ 3 } \) = a, \(\frac { 0+\beta +0 }{ 3 } \) = b, \(\frac { 0+0+\gamma }{ 3 } \) = c
⇒ α = 3α, β = 3b, γ = 3c
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 11
समतल का समीकरण \(\frac { x }{ \alpha } \) + \(\frac { y }{ \beta } \) + \(\frac { z }{ \gamma } \) = 1
⇒ \(\frac{x}{3a}\) + \(\frac{y}{3b}\) + \(\frac{z}{3c}\) = 1
⇒ \(\frac{x}{a}\) + \(\frac{y}{b}\) + \(\frac{z}{c}\) = 3. यही सिद्ध करना था।

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 19.
उस समतल का समीकरण ज्ञात कीजिए जो समतल 2x + 3y – z = 8 के समान्तर है एवं बिन्दु (1, 2, 3) से होकर जाता है।
हल:
समतल 2x +3y – z = 8 के समानान्तर किसी समतल का समीकरण होगा:
2x + 3y – z + λ = 0 ………… (1)
चूँकि समतल (1) बिन्दु (1, 2, 3) से होकर जाता है। अत:
2(1) + 3(2) – 3 + λ = 0
⇒ 2 + 6 – 3 + λ = 0
⇒ λ = -5
अत: समीकरण (1) में λ का मान रखने पर अभीष्ट समीकरण है:
2x + 3y – z – 5 = 0.

प्रश्न 20.
समतल 2x + 4y + 4z – 9 = 0 के अभिलम्ब की दिक्-कोज्याएँ ज्ञात कीजिए।
हल:
दिया गया समतल है:
2x + 4y + 4z – 9 = 0 ……………… (1)
इसके अभिलम्ब के दिक्-अनुपात हैं: 2, 4, 4
अतः समतल के अभिलम्ब की दिक्-कोज्याएँ होंगी:
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 12
⇒ \(\frac{1}{3}\), \(\frac{2}{3}\), \(\frac{2}{3}\).

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 21.
उस समतल का समीकरण ज्ञात कीजिये जिस पर मूलबिन्दु से डाले गये लम्ब की लम्बाई 5 इकाई तथा इस पर अभिलम्ब की दिक् – कोज्याएँ
\(\frac { 1 }{ \sqrt { 3 } } \), \(\frac { 1 }{ \sqrt { 3 } } \), –\(\frac { 1 }{ \sqrt { 3 } } \) है।
हल:
अभिलम्ब रूप में समतल का समीकरण
Ix + my + nz = p ………… (1)
दिया है – l = \(\frac { 1 }{ \sqrt { 3 } } \), m = \(\frac { 1 }{ \sqrt { 3 } } \), n = \(\frac { 1 }{ \sqrt { 3 } } \), p = 5
समी. (1) से,
\(\frac { 1 }{ \sqrt { 3 } } \)x + \(\frac { 1 }{ \sqrt { 3 } } \) y – \(\frac { 1 }{ \sqrt { 3 } } \) z = 5
⇒ x + y – z = 5\(\sqrt{3}\)

प्रश्न 22.
उस समतल का समीकरण ज्ञात कीजिये जिस पर मूलबिन्दु से डाले गये लम्ब की लम्बाई 4तथा जिसकी दिक्-कोज्याएँ 2, -3, 6 के समानुपाती हैं।
हल:
माना समतल का समीकरण
lx + my + nz = p
दिया है – p = 4, a = 2, b = -3, c = 6
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 13
समी. (1) से,
= \(\frac{2}{7}\)x –\(\frac{3}{7}\)y + \(\frac{6}{7}\)z = 4
⇒ 2x – 3y + 6z = 28.

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 23.
उस समतल का समीकरण ज्ञात कीजिये जिस पर मूलबिन्दु से डाले गये लम्ब की लम्बाई 5 तथा अभिलम्ब के दिक् – अनुपात 2, 3, 6 हैं।
हल:
प्रश्न क्रमांक 22 की भाँति हल कीजिये।
उत्तर: 2x + 3y + 6z = 35.

प्रश्न 24.
बिन्दु (1,-2, 3) से होकर जाने वाले उस समतल का समीकरण ज्ञात कीजिए जो उस सरल रेखा पर लम्ब है जिसके दिक् – अनुपात 2, 1, -1 हैं।
हल:
चूँकि प्रश्नानुसार समतल (1, -2, 3) से होकर जाता है जिसका समीकरण होगा:
a(x – 1) + b(y + 2) + c(2 – 3) = 0 …………. (1)
यह समतल रेखा पर लम्ब है, जिसके दिक्-अनुपात 2, 1, -1 हैं।
अत: समतल (1) के अभिलम्ब के दिक् – अनुपात a = 2k, b = k, c = -k हैं।
समी. (1) से,
k[2(x – 1) + 1.(y + 2) – 1.(z – 3) ] = 0
∵ k #0
⇒ 2x + y – z – 2 + 2 + 3 = 0
⇒ 2x + y – z + 3 = 0
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 14

प्रश्न 25.
(A) मूलबिन्दु से समतल 6x – 3y + 27 – 14 = 0 की लम्बवत् दूरी ज्ञात कीजिये।
हल:
समतल का समीकरण है:
6x – 3y + 27 – 14 = 0
मूलबिन्दु (0, 0, 0) से समतल (1) पर डाले गये लम्ब की लंबाई
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 15
= |\(\frac{14}{7}\)| = 2 इकाई।

(B) बाह्य बिन्दु (1, 2, 0) से समतल 4x + 3y + 12z + 16 = 0 पर डाले गये लम्ब की लम्बाई ज्ञात कीजिये।
हल:
समतल का समीकरण है:
4x + 3y + 12z + 16 = 0 …………. (1)
बिन्दु (1, 2, 0) से समतल (1) पर डाले गये लम्ब की लम्बाई
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 16
= |\(\frac{26}{13}\)| = 2 इकाई।

(C) बिन्दु (7, 14, 5) से समतल 2x + 4y – z = 2 पर डाले गये लम्ब की लम्बाई ज्ञात कीजिये।
हल:
प्रश्न क्रमांक 25 (B) की भाँति हल कीजिये।
उत्तर: 3\(\sqrt{21}\) इकाई।

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 26.
उस समतल का समीकरण ज्ञात कीजिए, जो बिन्दु (-1, 2, 3) से होकर जाता है और समतल 3x + 4y – 5z = 52 के समानान्तर है।
हल:
दिये गये समतल का समीकरण है:
3x + 4y – 5z = 52 ………….. (1)
माना समतल (1) के समानान्तर समतल का समीकरण है:
3x + 4y – 52 = λ …………. (2)
चूँकि समीकरण (2) बिन्दु (-1, 2, 3) से होकर जाता है।
∴ 3(-1) + 4(2) – 5(3) = λ
⇒ -3 + 8 – 15 = λ
⇒ λ = – 10
समीकरण (2) में 2 का मान रखने पर,
3x + 4y – 5z = – 10
∴ 3x + 41 – 5z + 10 = 0.

प्रश्न 27.
(A) समतल 3x + 4y – 7z = 84 के निर्देशाक्षों पर अन्तःखण्ड ज्ञात कीजिए।
हल:
दिया है:
समतल 3x + 4y – 7z = 84
⇒ \(\frac{3x}{84}\) + \(\frac{4y}{84}\) – \(\frac{7z}{84}\) = 1
⇒ \(\frac { x }{ (\frac { 84 }{ 3 } ) } \) + \(\frac { y }{ (\frac { 84 }{ 4 } ) } \) + \(\frac { z }{ (\frac { -84 }{ 7 } ) } \) = 1
⇒ \(\frac{x}{28}\) + \(\frac{y}{21}\) + \(\frac{z}{(-12)}\) = 1
स्पष्ट है कि निर्देशाक्षों पर अन्त:खण्ड 28, 21 एवं -12 है।

(B) समतल 3x + 4y – 6z = 72 द्वारा निर्देशाक्षों से काटे गये अन्त:खण्ड की लम्बाई ज्ञात कीजिए।
हल:
प्रश्न क्रमांक 27 (A) की भाँति हल कीजिए।
उत्तर: 24, 18, -12.

(C) उस समतल का समीकरण ज्ञात कीजिए जो X – अक्ष के समान्तर है तथा Y एवं z अक्षों से 5 और 7 अन्तः खण्ड काटता है।
हल:
माना समतल का समीकरण है –
\(\frac{x}{a}\) + \(\frac{y}{b}\) + \(\frac{z}{c}\) = 1 ………… (1)
चूँकि समतल (1)X – अक्ष के समान्तर है अत:
a = ∞
परन्तु दिया है b = 5, c = 7
∴ \(\frac { x }{ \infty } \) + \(\frac{y}{5}\) + \(\frac{z}{7}\) = 1
⇒ \(\frac{y}{5}\) + \(\frac{z}{7}\) = 1 [ \(\frac { x }{ \infty } \) = 0]
⇒ 7y + 5z = 35.

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 28.
मूलबिन्दु से गुजरने वाले उस समतल का समीकरण ज्ञात कीजिए जो निम्न समतलों पर लम्ब हो –
x + 2y – 7 = 1; 3x – 4y + z = -5.
हल:
मूलबिन्दु 0(0, 0, 0) से गुजरने वाले समतल का समीकरण है:
a(x – 0) + b(y – 0) + c(z – 0)
ax + by + cz = 0 ………….. (1)
समतल (1) दिये गये समतलों
x + 2y – 2 = 1 तथा 3x – 4y + 2 = -5 पर लम्ब है।
a + 2b – c = 0 ………… (2)
3a – 4b + c = 0
प्राप्त सम्बन्धों (2) और (3) को हल करने पर,
∴ \(\frac{a}{2-4}\) = \(\frac{-b}{1+3}\) = \(\frac{c}{-4-6}\)
⇒ \(\frac{a}{-2}\) = \(\frac{-b}{4}\) = \(\frac{c}{-10}\)
⇒ \(\frac{a}{1}\) = \(\frac{b}{2}\) = \(\frac{c}{5}\) = k
∴ a = k, b = 2k, c = 5k जहाँ k ≠ 0
∴ समी. (1) से,
k(x + 2y + 5z) = 0,
∴ x + 2y + 5z = 0 (∵ k ≠ 0).

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 29.
बिन्दुओं (2, 3, -4) एवं (1, -1, 3) से गुजरने वाले उस समतल का समीकरण ज्ञात कीजिए जो X – अक्ष के समानान्तर है।
हल:
X – अक्ष के समानान्तर किसी समतल का समीकरण होगा:
By + Cz + D = 0 ………… (1)
∵ समतल (1), बिन्दु (2, 3, -4) तथा (1, – 1, 3) से होकर जाता है।
∴ 3B – 4C + D = 0 …………. (2)
और -B + 3C + D = 0 ………. (3)
समी. (2) और (3) को हल करने पर,
\(\frac{B}{-4-3}\) = \(\frac{C}{-1-3}\) = \(\frac{D}{9-4}\)
⇒ \(\frac{B}{-7}\) = \(\frac{C}{-4}\) = \(\frac{D}{5}\) = k (माना)
⇒ ZB = -7k, C = -4k, D = 5k
अत: B, C व D के मान समी. (1) में रखने पर, समतल का अभीष्ट समीकरण है:
– 7ky – 4kz + 5k = 0
⇒ 7y + 4z – 5 = 0.

प्रश्न 30.
सिद्ध कीजिए कि दो समान्तर समतलों 2x – 2y + z + 3 = 0 तथा 4x – 4y + 2z + 5 = 0 के बीच की दूरी \(\frac{1}{6}\) है।
हल:
दिये गये समतल 2x – 2y + z + 3 = 0 ……….. (1)
4x – 4y + 2z + 5 = 0 ………. (2)
d1 = (0,0,0) से समतल (1) पर डाले गये लंब की लम्बाई
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 17
d2 से समतल (2) पर डाले गये लंब की लम्बाई
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 18
अभीष्ट दूरी = d1 – d2
= 1 – \(\frac{5}{6}\) = \(\frac{1}{6}\).

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 31.
उस समतल का समीकरण ज्ञात कीजिए जो समतलों x + y + – 6 = 0 और 2x + 3y + 4x + 5 = 0 की प्रतिच्छेद रेखा से होकर जाता है और बिन्दु (1, 1, 1) से होकर गुजरता है।
हल:
दिये गये समतलों के समीकरण हैं:
x + y + z – 6 = 0 ……….. (1)
और 2x + 3y + 4z + 5 = 0 ………… (2)
समतल (1) तथा (2) के प्रतिच्छेद रेखा से होकर जाने वाले समतल का समीकरण है:
(x + y + z – 6) + 2(2x + 3y + 4z + 5) = 0 ………. (3)
चूँकि समतल (3) बिन्दु (1, 1, 1) से होकर जाता है, तो
(1 + 1 + 1 – 6) + λ(2 + 3 + 4 + 5) = 0
⇒ -3 + λ(14) = 0
⇒ λ = \(\frac{3}{14}\)
समी. (3) में λ का मान रखने पर,
(x + y + z – 6) + \(\frac{3}{14}\) (2x + 3y + 4z + 5) = 0
20x + 23y + 26z – 69 = 0.

प्रश्न 32.
उस समतल का समीकरण ज्ञात कीजिए जो समतलों x + 2y + 3x – 5 और 2x – 4y + z = 3 की प्रतिच्छेदी रेखा से गुजरता है तथा बिन्दु (0, 1, 0) से होकर गुजरता है।
हल:
प्रश्न क्रमांक 31 की भाँति हल कीजिये।
उत्तर:
3x – 2y + 4z + 2 = 0.

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 33.
(A) उस समतल का सदिश समीकरण ज्ञात कीजिये जो बिन्दु 2\(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \) से गुजरता है तथा सदिश 6\(\hat { i } \) + 2\(\hat { j } \) – 3\(\hat { k } \) पर लम्ब है।
हल:
माना समतल का समीकरण है:
( \(\vec { r } \) – \(\vec { a } \) ).\(\vec { n } \) = 0 ………. (1)
यहाँ,
\(\vec { a } \) = 2\(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \)
\(\vec { n } \) = 6\(\hat { i } \) + 2\(\hat { j } \) – 3\(\hat { k } \)
समतल (1) से, ( \(\vec { r } \) – 2\(\hat { i } \) + \(\hat { j } \) – \(\hat { k } \) ).(6\(\hat { i } \) + 2\(\hat { j } \) – 3\(\hat { k } \) ) = 0
⇒ \(\vec { r } \).(6\(\hat { i } \) + 2\(\hat { j } \) – 3\(\hat { k } \) ) – 12 + 2 + 3 = 0
⇒ \(\vec { r } \).(6\(\hat { i } \) + 2\(\hat { j } \) – 3\(\hat { k } \) ) = 7.

(B) उस समतल का सदिश समीकरण ज्ञात कीजिये जो मूलबिन्दु से 7 इकाई की दूरी पर है तथा सदिश 4\(\hat { i } \) – 2\(\hat { j } \) + 3\(\hat { k } \) पर लम्ब है।
हल:
माना समतल का समीकरण है:
\(\vec { r } \).\(\hat { n } \) = P ……….. (1)
दिया है:
p = 7, \(\vec { n } \) = 4\(\hat { i } \) – 2\(\hat { j } \) + 3\(\hat { k } \)
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 19
समतल (1) से,
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 20
⇒ \(\vec { r } \).(4\(\hat { i } \) – 2\(\hat { j } \) + 3\(\hat { k } \) ) = 7\(\sqrt{29}\)

(C) बिन्दु (2, -1, 3) की समतल \(\vec { r } \).(3\(\hat { i } \) + 2\(\hat { j } \) – 6\(\hat { k } \) ) + 15 = 0 से दूरी ज्ञात कीजिए।
हल:
दिया है:
समतल \(\vec { r } \).\(\vec { n } \) = q से करने पर,
\(\vec { n } \) = 3\(\hat { i } \) + 2\(\hat { j } \) – 6\(\hat { k } \) तथा
q = -15
माना बिन्दु \(\vec { a } \) = 2\(\hat { i } \) – \(\hat { j } \) + 3\(\hat { k } \)
हम जानते हैं, बिन्दु \(\vec { a } \) से समतल \(\vec { r } \).\(\vec { n } \) = q की दूरी
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 21
= \(\frac{6-2-18+15}{7}\) = \(\frac{1}{7}\) इकाई।

(D) बिन्दु (2\(\hat { i } \) – \(\hat { j } \) – 4\(\hat { k } \) ) से \(\vec { r } \).(3\(\hat { i } \) – 4\(\hat { j } \) + 12\(\hat { k } \) ) = 19 की दूरी ज्ञात कीजिए।
हल:
दिया है:
समतल \(\vec { r } \).(3\(\hat { i } \) – 4\(\hat { j } \) + 12\(\hat { k } \) ) = 19
बिन्दु (2\(\hat { i } \) – \(\hat { j } \) – 4\(\hat { k } \) ) से दूरी = image 21
= \(\frac{-57}{13}\) = \(\frac{57}{13}\) (संख्यात्मक मान)।

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 34.
समतलों \(\vec { r } \). (2\(\hat { i } \) – 3\(\hat { j } \) + 4\(\hat { k } \) ) = 1 तथा \(\vec { r } \).(-\(\hat { i } \) + \(\hat { j } \) ) = 4 के बीच का कोण ज्ञात कीजिए।
हल:
दिया है:
समतलों \(\vec { r } \). (2\(\hat { i } \) – 3\(\hat { j } \) + 4\(\hat { k } \) ) = 1 …………. (1)
\(\vec { r } \).(-\(\hat { i } \) + \(\hat { j } \) ) = 4 ………….. (2)
यहाँ
\(\vec { n_{ 1 } } \) = 2\(\hat { i } \) – 3\(\hat { j } \) + 4\(\hat { k } \)
\(\vec { n_{ 2 } } \) = –\(\hat { i } \) + \(\hat { j } \)
माना समतलों (1) व (2) के बीच का कोण θ है, तब
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 22
∴ θ = cos-1 ( \(\frac { -5 }{ \sqrt { 58 } } \) ).

त्रि-विमीय ज्यामिति दीर्घ उत्तरीय प्रश्न – II

प्रश्न 1.
बिन्दु (1, 6, 3) से रेखा \(\frac{x}{1}\) = \(\frac{y-1}{2}\) = \(\frac{z-2}{3}\) की लम्बवत् दूरी ज्ञात कीजिए।
हल:
दी गई रेखाएँ हैं:
\(\frac{x-0}{1}\) = \(\frac{y-1}{2}\) = \(\frac{z-2}{3}\)
रेखा पर स्थित एक बिन्दु A के निर्देशांक A(0,1, 2) है।
रेखा (1) के दिक् – अनुपात 1, 2, 3
अतः दिक्-कोज्याएँ हैं
\(\frac { 1,2,3 }{ \sqrt { 1+4+9 } } \) = \(\frac { 1 }{ \sqrt { 14 } } \), \(\frac { 2 }{ \sqrt { 14 } } \), \(\frac { 3 }{ \sqrt { 14 } } \)
बिन्दु P(1, 6, 3) दी गई है।
∴ AM = AP का रेखा (1) पर डाला गया प्रक्षेप
= (x2 – x1)l + (y2 – y1)m + (z2 – z1)n
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 23
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 24
समकोण ∆PAM में,
PM2 = AP2 – AM2
= 27 – 14 = 13
∴ PM = \(\sqrt{13}\) इकाई।

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 2.
समान्तर रेखाओं \(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) और \(\frac{x-2}{4}\) = \(\frac{y-3}{6}\) = \(\frac{z-4}{8}\) के बीच की दूरी ज्ञात कीजिए।
हल:
दी गई रेखाएँ हैं:
\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) ………… (1)
तथा \(\frac{x-2}{4}\) = \(\frac{y-3}{6}\) = \(\frac{z-4}{8}\) ……… (2)
रेखा (1) पर कोई बिन्दु P(1, 2, 3) है। अब हम बिन्दु P(1, 2, 3) से रेखा (2) पर डाले गये लम्ब की लम्बाई PM ज्ञात करेंगे।
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 25
रेखा (2) बिन्दु A(2, 3, 4) से होकर जाता है।
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 26
रेखा PA का रेखा (2) पर प्रक्षेप = AM
∴ AM = (x2 – x1)l + (y2 – y1)m + (z2 – z1)n जहाँ l, m, n रेखा (2) की दिक् – कोज्यायें हैं।
⇒ AM = (2 – 1)l + (3 – 2)m + (4 – 3)n
⇒ AM = l + m + n
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 27
चूँकि रेखा (2) का दिक्-अनुपात 4, 6, 8 है।
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 28
अब ∆APM में,
PM2 = Ap2 – AM2
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 29
⇒ PM2 = \(\frac{87-81}{29}\) = \(\frac{6}{29}\)
∴ PM = \(\sqrt { \frac { 6 }{ 29 } } \)

प्रश्न 3.
उस समतल का समीकरण ज्ञात कीजिये जो रेखा \(\frac{x-3}{2}\) = \(\frac{y+2}{3}\) = \(\frac{z-4}{-1}\) और बिन्दु (-6, 3, 2) से होकर जाता है।
हल:
माना समतल का समीकरण है:
A(x – α) + B(y – β) + C(2 – γ) = 0
यह रेखा \(\frac{x-3}{2}\) = \(\frac{y+2}{3}\) = \(\frac{z-4}{-1}\) से जाता है।
A(x – 3) + B(y + 2) + C(2 – 4) = 0 …………. (1)
समतल बिन्दु (-6, 3, 2) से भी जाता है:
∴A(-6 – 3) + B(3 + 2) + C(2 – 4) = 0
⇒ -9A + 5B – 2C = 0
⇒ 9A – 5B + 2C = 0 ………… (2)
रेखा के दिक् अनुपात 2, 3, -1 हैं।
समतल पर अभिलम्ब के दिक् अनुपात A, B, C हैं:
∴ 2A + 3B – C = 0 ……….. (3)
समी. (2) और (3) को हल करने पर,
9A – 5B + 2C = 0
2A + 3B – C = 0
\(\frac{A}{5-6}\) = \(\frac{B}{4+9}\) = \(\frac{C}{27+10}\)
⇒ \(\frac{A}{-1}\) = \(\frac{B}{13}\) = \(\frac{C}{37}\)
समी. (1) में मान रखने पर,
-1.(x – 3) + 13(y + 2) + 37(z – 4) = 0
⇒ -x + 3 + 13y + 26 + 37z – 148 = 0
⇒ -x + 13y + 37z – 119 = 0
⇒ x – 13y – 37z + 119 = 0.

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 4.
सरल रेखाओं \(\frac{x-3}{3}\) = \(\frac{y-8}{-1}\) = \(\frac{z-3}{1}\) और \(\frac{x+3}{-3}\) = \(\frac{y+7}{2}\) = \(\frac{z-6}{4}\) के बीच की न्यूनतम दूरी ज्ञात कीजिए।(कार्तीय विधि से)
हल:
दी गयी रेखायें \(\frac{x-3}{3}\) = \(\frac{y-8}{-1}\) = \(\frac{z-3}{1}\) और \(\frac{x+3}{-3}\) = \(\frac{y+7}{2}\) = \(\frac{z-6}{4}\) के बीच कि न्यूनतम दूरी ज्ञात कीजिए।
हल:
दी गयी रेखाओं \(\frac{x-3}{3}\) = \(\frac{y-8}{-1}\) = \(\frac{z-3}{1}\) और \(\frac{x+3}{-3}\) = \(\frac{y+7}{2}\) = \(\frac{z-6}{4}\) है।
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 30
दिया है,
x1 = 3, y1 = 8, z1 = 3, x2 = -3, y2 = -7, z2 = 6
a1 = 3, b1 = -1, c1 = 1, a2 = -3, b2 = 2, c2 = 4
प्रशानुसार: दी गयी रेखाओं के बीच की नुनथम दूरी
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 31

प्रश्न 5.
रेखाओं \(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) और \(\frac{x-2}{3}\) = \(\frac{y-3}{4}\) = \(\frac{z-4}{5}\) के प्रतिच्छेद बिन्दु के निर्देशांक ज्ञात कीजिए।
हल:
माना \(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = r
∴ x = 2r + 1, y = 3r + 2, z = 4r + 3
माना यह प्रतिछेद बिंदु है तो यह रेखा \(\frac{x-2}{3}\) = \(\frac{y-3}{4}\) = \(\frac{z-4}{5}\) को सन्तुष्ट करेगा।
∴ \(\frac{2r+1-2}{3}\) = \(\frac{3r+2-3}{4}\) = \(\frac{4r+3-4}{5}\)
⇒ \(\frac{2r-1}{3}\) = \(\frac{3r-1}{4}\) = \(\frac{4r-1}{5}\) था \(\frac{2r-1}{3}\) = \(\frac{3r-1}{4}\)
⇒ 8r – 4 = 9r – 3 ⇒ -4 + 3 = 9r – 8r
⇒ r = -1
∴ x = -2 + 1, y = -3 + 2, z = -4 + 3
⇒ x = -1, y = -1, z = -1
अतः प्रतिच्छेद बिन्दु (-1, -1, -1).

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 6.
सिद्ध कीजिए कि रेखायें x – 3 = \(\frac{y+4}{-3}\) = \(\frac{z-5}{3}\) और x – 4 = \(\frac{y-5}{3}\) = \(\frac{z+6}{-4}\) एक –
दूसरे को प्रतिच्छेद करती हैं। प्रतिच्छेद बिन्दु के निर्देशांक ज्ञात कीजिए।
हल:
\(\frac{x-3}{1}\) = \(\frac{y+4}{-3}\) = \(\frac{z-5}{3}\) ………… (1)
\(\frac{x-4}{1}\) = \(\frac{y-5}{3}\) = \(\frac{z+6}{-4}\) ……….. (2)
x1 = 3, y1 = -4, z1 = 5, l1 = 1, m1 = -3, n1 = 3
x2 = 4, y2 = -6, l2 = 1, m2 = 3, n2 = -4
रेखायें प्रतिच्छेद करेंगे यदि image 31
⇒ 1(12 – 9) -1 (-36 + 33) + 1(27 – 33) = 0
⇒ 3 + 3 -6 = 0
⇒ 0 = 0 यही सिद्ध करना था।
अतः रेखायें प्रतिच्छेद करती है।
पुनः समी. (1) से,
\(\frac{x-3}{1}\) = \(\frac{y+4}{-3}\) = \(\frac{z-5}{3}\) = r
रेखा पर स्थित कोई बिन्दु (r + 3,- 3r – 4, 3r + 5)
समी. (2) में मान रखने पर,
\(\frac{r-1}{1}\) = \(\frac{-3r-9}{3}\) = \(\frac{3r+11}{-4}\)
हल करने पर, r = -1
∴ प्रतिच्छेद बिन्दु = (-1 + 3, 3 – 4, -3 + 5) = (2, -1, 2).

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 7.
रेखाओं \(\vec { r } \) = \(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \) + t(2\(\hat { i } \) + 3\(\hat { j } \) + 4\(\hat { k } \) ) और \(\vec { r } \) = 2\(\hat { i } \) + 4\(\hat { j } \) + 5\(\hat { k } \) + s(3\(\hat { i } \) + 4\(\hat { j } \) + 5\(\hat { k } \) ) के बीच की न्यूनतम दूरी ज्ञात कीजिए।
हल:
दी गयी रेखायें \(\vec { r } \) = \(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \) + t(2\(\hat { i } \) + 3\(\hat { j } \) + 4\(\hat { k } \) )
और \(\vec { r } \) = 2\(\hat { i } \) + 4\(\hat { j } \) + 5\(\hat { k } \) + s(3\(\hat { i } \) + 4\(\hat { j } \) + 5\(\hat { k } \) )
यहाँ \(\overrightarrow{a_{1}}\) = \(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \) + \(\overrightarrow{b_{1}}\) = 2\(\hat { i } \) + 3\(\hat { j } \) + 4\(\hat { k } \)
\(\overrightarrow{a_{2}}\) = 2\(\hat { i } \) + 4\(\hat { j } \) + 5\(\hat { k } \), \(\overrightarrow{b_{2}}\) = 3\(\hat { i } \) + 4\(\hat { j } \) + 5\(\hat { k } \)
\(\overrightarrow{a_{2}}\) – \(\overrightarrow{a_{1}}\) = (2\(\hat { i } \) – \(\hat { i } \) ) + (4\(\hat { j } \) – 2\(\hat { j } \) ) + (5\(\hat { k } \) – 3\(\hat { k } \) )
⇒ \(\overrightarrow{a_{2}}\) – \(\overrightarrow{a_{1}}\) = \(\hat { i } \) + 2\(\hat { j } \) + 2\(\hat { k } \)
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 32
= \(\hat { i } \)(15 – 16) – \(\hat { j } \)(10 – 12) + \(\hat { k } \)(8 – 9)
∴ \(\overrightarrow{b_{1}}\) × \(\overrightarrow{b_{2}}\) = –\(\hat { i } \) + 2\(\hat { j } \) – \(\hat { k } \)
अत: अभीष्ट न्यूनतम दूरी (S. D.)
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 33

प्रश्न 8.
सिद्ध कीजिए कि रेखाएँ \(\vec { r } \) = \(\hat { i } \) + \(\hat { j } \) – \(\hat { k } \) + λ(3\(\hat { i } \) – \(\hat { j } \) ) तथा \(\vec { r } \) = 4\(\hat { i } \) – \(\hat { k } \) + µ(2\(\hat { i } \) + 3\(\hat { k } \) ) प्रतिच्छेद करती हैं। प्रतिच्छेद बिन्दु को ज्ञात कीजिए।
हल:
दी हुई रेखाएँ हैं:
\(\vec { r } \) = \(\hat { i } \) + \(\hat { j } \) – \(\hat { k } \) – λ(3\(\hat { i } \) – \(\hat { j } \) ) ……… (1)
तथा \(\vec { r } \) = 4\(\hat { i } \) – \(\hat { k } \) + µ(2\(\hat { i } \) + 3\(\hat { k } \) ) ……….. (2)
यहाँ, \(\overrightarrow{a_{1}}\) = \(\hat { i } \) + \(\hat { j } \) – \(\hat { k } \); \(\overrightarrow{b_{1}}\) = 3\(\hat { i } \) – \(\hat { j } \)
तथा \(\overrightarrow{a_{2}}\) = 4\(\hat { i } \) – \(\hat { k } \) ); \(\overrightarrow{b_{2}}\) = 2\(\hat { i } \) + 3\(\hat { k } \)
∴\(\overrightarrow{a_{2}}\) – \(\overrightarrow{a_{1}}\) = (4\(\hat { i } \) – \(\hat { k } \) ) – ( \(\hat { i } \) + \(\hat { j } \) – \(\hat { k } \) ) = 3\(\hat { i } \) – \(\hat { j } \)
∴ अतः दोनों रेखाएँ प्रतिच्छेद करती हैं।
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 34
⇒ 3(-3) + 9 = 0
⇒ 0 = 0
अतः दोनों रेखाएँ करती हैं।
चूँकि प्रतिच्छेदी बिन्दु पर समी. (1) व (2) से प्राप्त \(\vec { r } \) के मान समान होंगे, अतः
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 35
अतः \(\hat { i } \), \(\hat { j } \) व \(\hat { k } \) के गुणांकों की तुलना करने पर,
1 + 3λ = 4 + 2µ ……… (3)
1 – λ = 0 ……… (4)
तथा -1 = 3µ – 1
समी. (4) से 1 – λ = 0 ⇒ λ = 1 ……… (5)
समी. (5) से µ = 0
स्पष्टतः λ और µ के मान समी. (3) को सन्तुष्ट करते हैं। अतः समी. (1) में λ का (अथवा समी. (2) में µ का) मान रखने पर प्रतिच्छेद बिन्दु का स्थिति सदिश 4\(\hat { i } \) – \(\hat { k } \) या 4\(\hat { i } \) + 0\(\hat { j } \) – \(\hat { k } \) प्राप्त होता है।
अतः प्रतिच्छेदी बिन्दु के निर्देशांक (4, 0, – 1) होंगे।

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 9.
(A) दो रेखाएँ जिनके सदिश समीकरण –
\(\vec { r } \) = (3 – t)\(\hat { i } \) + (4 + 2t)\(\hat { j } \) + (t – 2)\(\hat { k } \)
तथा \(\vec { r } \) = (1 + s)\(\hat { i } \) + (3s – 7)\(\hat { j } \) + (2s – 2)\(\hat { k } \) हैं।
उनके बीच की न्यूनतम दूरी ज्ञात कीजिए।
हल:
\(\vec { r } \) = (3 – t)\(\hat { i } \) + (4 + 2t)\(\hat { j } \) + (t – 2)\(\hat { k } \)
⇒ \(\vec { r } \) = (3\(\hat { i } \) + 4\(\hat { j } \) – 2\(\hat { k } \) ) + t(-\(\hat { i } \) + 2\(\hat { j } \) + 2\(\hat { k } \) ) ………… (1)
⇒ \(\vec { r } \) = (1 + s)\(\hat { i } \) + (3s – 7)\(\hat { j } \) + (2s – 2)\(\hat { k } \)
⇒ \(\vec { r } \) = ( \(\hat { i } \) – 7\(\hat { j } \) – 2\(\hat { k } \) ) + s( \(\hat { i } \) + 3\(\hat { j } \) + 2\(\hat { k } \) ) ……….. (2)
यहाँ \(\overrightarrow{a_{1}}\) = 3\(\hat { i } \) + 4\(\hat { j } \) – 2\(\hat { k } \), \(\overrightarrow{b_{1}}\) = –\(\hat { i } \) + 2\(\hat { j } \) + 2\(\hat { k } \)
\(\overrightarrow{a_{2}}\) = ( \(\hat { i } \) – 7\(\hat { j } \) – 2\(\hat { k } \) ), \(\overrightarrow{b_{2}}\) = \(\hat { i } \) + 3\(\hat { j } \) + 2\(\hat { k } \)
\(\overrightarrow{a_{2}}\) – \(\overrightarrow{a_{1}}\) = ( \(\hat { i } \) – 7\(\hat { j } \) – 2\(\hat { k } \) ) – (3\(\hat { i } \) + 4\(\hat { j } \) – 2\(\hat { k } \) ) = -2\(\hat { i } \) – 11\(\hat { j } \) + 0\(\hat { k } \)
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 36
= \(\hat { i } \) (4 – 3) – \(\hat { j } \) (-2 – 1) + \(\hat { k } \) (-3 – 2) = \(\hat { i } \) + 3\(\hat { j } \) – 5\(\hat { k } \)
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 37

(B) निम्न रेखाओं के बीच की न्यूनतम दूरी ज्ञात कीजिए –
\(\vec { r } \) = (λ – 1)\(\hat { i } \) + (λ + 1)\(\hat { j } \) – (1 + λ)\(\hat { k } \)
तथा \(\vec { r } \) = (1 – µ)\(\hat { i } \) + (2µ – 1)\(\hat { j } \) + (µ + 2)\(\hat { k } \)
हल:
प्रश्न क्र. 9 (A) की भाँति हल करें।

(C) उन दो रेखाओं के बीच की न्यूनतम दूरी ज्ञात कीजिये जिनके सदिश समीकरण निम्न हैं –
तथा \(\vec { r } \) = (1 + 2λ)\(\hat { i } \) + (2 + 3λ)\(\hat { j } \) + (3 + 4λ)\(\hat { k } \)
\(\vec { r } \) = (2 + 3µ)\(\hat { i } \) + (3 + 4µ)\(\hat { k } \) + (4 + 5µ)\(\hat { k } \)
हल:
प्रश्न क्र. 9 (A) की भाँति हल करें।

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 10.
उस समतल का समीकरण ज्ञात कीजिए जो x + 3y + 4 – 5 = 0 और 3x – 4y + 9x – 10 = 0 की प्रतिच्छेदी रेखा से होकर जाता है तथा समतल x + 2y = 0 पर लम्ब है।
हल:
दिये गये समतलों के समीकरण हैं:
x + 3y + 4z – 5 = 0 …………. (1)
और 3x – 4y + 9z – 10 = 0 ……………. (2)
समतल (1) तथा (2) की प्रतिच्छेदी रेखा से होकर जाने वाले समतल का समीकरण है:
(x + 3) + 4z – 5) + λ(3x – 4y + 9z – 10) = 0
⇒ (1 + 3λ).1 + (3 – 4λ).2 + (4 + 9λ).0 = 0
⇒ 1 + 3λ + 6 – 8λ = 0
⇒ λ = \(\frac{7}{5}\)
समी. (3) में 2 का मान रखने पर,
(x + 3y + 4z – 5) + \(\frac{7}{5}\) (3x – 4y + 9z – 10) = 0
⇒ 26x – 13y + 83z = 95.

प्रश्न 11.
उन समतलों के समीकरण ज्ञात कीजिए जो समतल x – 2y + 2x = 3 के समान्तर हैं तथा उनकी बिन्दु (1, 2, 3) से लाम्बिक दूरी 1 है।
हल:
समतल x – 2y + 2z = 3 के समान्तर किसी समतल का समीकरण है:
x – 2y + 2z + λ = 0 ………. (1)
उपर्युक्त समतल पर बिन्दु (1, 2, 3) से डाले गये लम्ब की लम्बाई
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 38
प्रश्नानुसार, \(\frac { 3+\lambda }{ 3 } \) = ±1
⇒ λ + 3 = ±3
⇒ λ = 0, -6
अतः λ के मान समीकरण (1) में रखने पर अभीष्ट समतलों के समीकरण हैं:
x – 2y + 2z = 0, x – 2y + 2z = 6.

प्रश्न 12.
(A) उस समतल का समीकरण ज्ञात कीजिए जो बिन्दुओं (1, -2, 4) और (3, -4, 5) से गुजरता है तथा समतल x + y – 27 = 6 के लम्बवत् है।
हल:
बिन्दु (1, -2, 4) से जाने वाले समतल का समीकरण होगा:
A(x – 1) + B(y + 2) + C(z – 4) = 0 ………… (1)
समतल (1), बिन्दु (3, -4, 5) से होकर जाता है, अतः
A(3 – 1) + B(-4 + 2) + C(5 – 4) = 0
⇒ 2A – 2B + C = 0 …………. (2)
दिये गये समतल का समीकरण है:
x + y – 2z = 6 …………… (3)
समतल (1) और (3) लम्बवत् है, इसलिए इनके अभिलम्ब भी लम्बवत् होंगे।
A + B – 2C = 0 ………. (4)
समी. (2) और (4) से,
2A – 2B + C = 0
A + B – 2C = 0
⇒ \(\frac{A}{4-1}\) = \(\frac{B}{1+4}\) = \(\frac{C}{2+2}\) = k,
⇒ \(\frac{A}{3}\) = \(\frac{B}{5}\) = \(\frac{C}{4}\) (माना)
⇒ A = 3k, B = 5k, C = 4k
A, B, C का मान समी. (1) में रखने पर, अभीष्ट समतल का समीकरण होगा:
3k(x – 1) + 5k(y + 2) + 4k(z – 4) = 0
⇒ 3x – 3 + 5y + 10 + 4z – 16 = 0
⇒ 3x + 5y + 42 – 9 = 0.

(B) उस समतल का समीकरण ज्ञात कीजिये जो कि (-1,1,1) तथा (1,-1,1) से जाता है तथा x + 2y + 2x = 9 पर लम्ब है।
हल:
प्रश्न क्र. 12 (A) की भाँति स्वयं हल कीजिये।
उत्तर: 2x + 2y – 3z + 3 = 0.

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 13.
(A) उस समतल का समीकरण ज्ञात कीजिए जो बिन्दु (1, 1, -1) से गुजरता है तथा समतलों x + 2y + 3z = 7 तथा 2x – 3y + 4 = 0 पर लम्ब है।
हल:
माना समतल का समीकरण
A(x – x1) + B(y – y1) + C(z – z1) = 0
⇒ A(x – 1) + B(y – 1) + C(z + 1) = 0 ………… (1)
दिये गये समतल
x + 2y + 3z = 7 ……….. (2)
2x-3y + 4z = 0 ………. (3)
समतल (1) समतलों (2) तथा (3) पर लम्ब है
∴ 1.A + 2.B + 3.C = 0
2.A – 3.B + 4.C = 0
\(\frac{A}{8+9}\) = \(\frac{B}{6-4}\) = \(\frac{C}{-3-4}\) = k
⇒ A = 17k, B = 2k, C = -7k
A, B, C का मान समी. (1) में रखने पर, अभीष्ट समतल का समीकरण होगा –
17(x – 1) + 2(y – 1) – 7(z + 1) = 0
⇒ 17x + 2y – 7z – (17 + 2 + 7) = 0
⇒ 17x + 2y – 7z – 26 = 0.

(B) उस समतल का समीकरण ज्ञात कीजिए जो बिन्दु (2, 1, 4) से जाता है तथा समतलों 9x – 7y + 6z + 48 = 0 तथा x + y – z = 0 पर लम्ब है।
हल:
प्रश्न क्र. 13 (A) की भाँति हल कीजिये।
उत्तर: x + 15y + 16z = 81.

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 14.
बिन्दुओं (2, 2, -1), (3, 4, 2) और (7, 0, 6) से जाने वाले समतल का समीकरण ज्ञात कीजिए।
हल:
बिन्दु (2, 2, -1) से होकर जाने वाले किसी समतल का समीकरण होगा –
A(x – 2) + B(y – 2) + C(z + 1) = 0 ………. (1)
चूँकि समतल (1) क्रमशः बिन्दु (3, 4, 2) व (7, 0, 6) से होकर जाता है अतः ये बिन्दु समतल के समीकरण को संतुष्ट करेगा।
∴ A(3 – 2) + B(4 – 2) + C(2 + 1) = 0
⇒ A + 2B + 3C = 0 ……….. (2)
तथा A(7 – 2) + B(0 – 2) + C(6 + 1) = 0
⇒ 5A – 2B + 7C = 0 …………. (3)
समी. (2) व (3) को हल करने पर,
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 39
⇒ A = 5k, B = 2k, C = -3k
A, B, C के इन मानों को समी. (1) में रखने पर,
5k(x – 2) + 2k(y – 2) + (- 3k)(z + 1) = 0
⇒ 5x + 2y – 3z – 17 = 0.

प्रश्न 15.
सिद्ध कीजिये कि बिन्दु (0, -1, -1), (4, 5, 1), (3, 9, 4) तथा (-4, 4, 4) समतलीय हैं।
हल:
बिन्दु (0, -1, -1) से होकर जाने वाले समतल का समीकरण होगा –
A(x – 0) + B(y + 1) + C(z + 1) = 0 ………….. (1)
चूँकि समतल (1) क्रमशः बिन्दु (4, 5, 1) व (3, 9, 4) से होकर जाता है। अतः ये बिन्दु समतल के समीकरण को संतुष्ट करेगा।
∴ A(4 – 0) + B(5 + 1) + C(1 + 1) = 0
⇒ 4A + 6B + 2C = 0
⇒ 2A + 3B + C = 0 ………….. (2)
तथा A(3 – 0) + B(9 + 1) + C(4 + 1) = 0
⇒ 3A + 10B + 5C = 0 …………. (3)
समी. (2) और (3) को हल करने पर,
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 40
⇒ A = -5k, B = -7k, C = 11k
A, B, C के मानों को समी. (1) में रखने पर,
5x – 7(y + 1) + 11(z + 1) = 0
⇒ 5x – 7y + 11z + 4 = 0 ………. (4)
यदि यह समतल (-4, 4, 4) से जाता है तो समी. (4) को सन्तुष्ट करेगा
L.H.S. = 5(-4) – 7(4) + 11(4) + 4
= -20 – 28 + 44 + 4
= 0 = R.H.S.
अतः दिये गये बिन्दु समतलीय हैं। यही सिद्ध करना था।

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 16.
एक चर समतल \(\frac{x}{a}\) + \(\frac{y}{b}\) + \(\frac{z}{c}\) = 1 मूलबिन्दु से इकाई दूरी पर है। यह निर्देशांक अक्षों को A, B, C पर काटता है। केन्द्रक (x, y, z) समीकरण \(\frac { 1 }{ x^{ 2 } } \) + \(\frac { 1 }{ y^{ 2 } } \) + \(\frac { 1 }{ z^{ 2 } } \) = k को सन्तुष्ट करता है, तो k का xy मान ज्ञात कीजिये।
हल:
दिया गया समतल
\(\frac{x}{a}\) + \(\frac{y}{b}\) + \(\frac{z}{c}\) = 1 ……… (1)
OA = a, OB = b, OC = c
बिन्दुओं A, B, C के निर्देशांक क्रमशः (a, 0, 0), (0, b, 0) तथा (0, 0, c) हैं।
मूलबिन्दु से समतल (1) पर डाले गये लम्ब की लम्बाई 1 है।
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 41
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 41a
दिया है –
x = \(\frac{a}{3}\), y = \(\frac{b}{3}\), z = \(\frac{c}{3}\)
⇒ a = 3x, b = 3y, c = 3z
a, b, c का मान समी. (2) में रखने पर,
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 42
स्पष्ट है कि k = 9.

प्रश्न 17.
समतलों x + 2y + 3x = 4 तथा 2x + y – x + 5 = 0 की प्रतिच्छेदी रेखा से होकर जाने वाले उस समतल का समीकरण ज्ञात कीजिये जो समतल 5x + 3y + 62 + 8 = 0 पर लम्ब हो।
हल:
दिया गये समतल
x + 2y + 3z = 4 ……….. (1)
2x + y – z + 5 = 0 ………… (2)
समतलों (1) और (2) के प्रतिच्छेदी रेखा से होकर जाने वाले समतल का समीकरण
x + 2y + 3z – 4 + λ(2x + y – z + 5) = 0
⇒ (1 + 2λ)x + (2 + λ)y + (3 – λ)z – 4 + 5λ = 0
यह समतल 5x + 3y + 6z + 8 = 0 पर लम्ब है
∴ 5(1 + 2λ) + 3(2 + λ) + 6(3 – λ) = 0
⇒ 10λ + 3λ – 6λ + 5 + 6 + 18 = 0
⇒ 7λ + 29 = 0
⇒ λ = \(\frac{-29}{7}\)
समी. (3) में मान रखने पर,
x + 2y + 3z – 4 – \(\frac{29}{7}\) (2x + y – z + 5) = 0
⇒ 7x + 14y + 21z – 28 – 58x – 29y + 29z – 145 = 0
⇒ -51x – 15y + 50z – 173 = 0
⇒ 51x + 15y – 50z + 173= 0.

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 18.
उस समतल का समीकरण ज्ञात कीजिये जो रेखा, \(\frac{x-3}{2}\) = \(\frac{y+2}{9}\) = \(\frac{z-4}{-1}\) और बिन्दु (-6, 3, 2) से होकर जाता है।
हल:
रेखा बिन्दु (3, -2, 4) से जाती है।
∴ बिन्दु (3, -2, 4) से होकर जाने वाले समतल का समीकरण
A(x – 3) + B(y + 2) + C(2 – 4) = 0 ………. (1)
समतल (1) बिन्दु (-6, 3, 2) से भी जाता है,
-9A + 5B – 2C = 0 …………. (2)
रेखा के दिक्-अनुपात 2, 9, -1 हैं,
2A + 9B – C = 0 ……….. (3)
समी. (2) और (3) को हल करने पर,
-9A + 5B – 2C = 10
2A + 9B – C = 0
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 43
A = k, B = -k, C = -7k
समी. (1) में मान रखने पर,अभीष्ट समतल का समीकरण,
k(x – 3) – k(y + 2) – 7k(z – 4) = 0
⇒ x – y – 7z – 3 – 2 + 28 = 0
⇒ x – y – 7z + 23 = 0.

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 19.
बिन्दु (1, 2, 3) से जाने वाली तथा समतलों \(\vec { r } \).( \(\hat { i } \) – \(\hat { j } \) + 2\(\hat { k } \) ) = 5 और \(\vec { r } \).(3\(\hat { i } \) + \(\hat { j } \) + \(\hat { k } \) ) = 6 के समान्तर रेखा का सदिश समीकरण ज्ञात कीजिए। (NCERT)
हल:
माना रेखा का समीकरण है –
\(\vec { r } \) = \(\vec { a } \) + t\(\vec { b } \)
यहाँ \(\vec { a } \) = \(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \)
माना \(\vec { b } \) = b1\(\hat { i } \) + b2\(\hat { j } \) + b3\(\hat { k } \)
\(\vec { r } \) = \(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \) + t(b1\(\hat { i } \) + b2\(\hat { j } \) + b3\(\hat { k } \) ………. (1)
समतलों के समीकरण हैं –
\(\vec { r } \).( \(\hat { i } \) – \(\hat { j } \) + 2\(\hat { k } \) ) = 5 ………………. (2)
तथा \(\vec { r } \) (3\(\hat { i } \) + \(\hat { j } \) + \(\hat { k } \) ) = 6 …………. (3)
रेखा (1) और समतल (2) समान्तर हैं
∴ (b1\(\hat { i } \) + b2\(\hat { j } \) + b3\(\hat { k } \) ). (3\(\hat { i } \) + \(\hat { j } \) + \(\hat { k } \) ) = 0
b1 – b2 + 2b3 = 0 ………… (4)
रेखा (1) और समतल (3) समान्तर हैं
∴ (b1\(\hat { i } \) + b2\(\hat { j } \) + b3\(\hat { k } \) ). (3\(\hat { i } \) + \(\hat { j } \) + \(\hat { k } \) ) = 0
3b1 + b2 + b3 = 0 …………. (5)
समी. (4) और समी. (5) से,
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 44
\(\vec { b } \) के दिक् अनुपात –3, 5, 4 है।
अतः रेखा का समीकरण होगा –
\(\vec { r } \) = (\(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \) ) + t(-3\(\hat { i } \) + 5\(\hat { j } \) + 4\(\hat { k } \) ).

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 20.
बिन्दु (1, 2, -4) से जाने वाली रेखाओं \(\frac{x-8}{3}\) = \(\frac{y+19}{-16}\) = \(\frac{z-10}{7}\) और \(\frac{x-5}{3}\) = \(\frac{y-29}{8}\) = \(\frac{z-5}{-5}\) पर लम्ब रेखा का सदिश समीकरण ज्ञात कीजिए। (NCERT)
हल:
बिन्दु (1, 2, -4) से जाने वाली रेखा का समीकरण है –
\(\frac{x-1}{a}\) = \(\frac{y-2}{b}\) = \(\frac{z+4}{c}\) ………. (1)
रेखाओं के समीकरण है:
\(\frac{x-8}{3}\) = \(\frac{y+19}{-16}\) = \(\frac{z-10}{7}\) ……….. (2)
\(\frac{x-5}{3}\) = \(\frac{y-29}{8}\) = \(\frac{z-5}{-5}\) ……… (3)
रेखा (1) और (2) लम्बवत् हैं
3a – 16b + 7c = 0 ……… (4)
रेखा (1) और (3) लम्बवत् हैं
3a + 8b – 5c = 0 …….. (5)
समी. (4) और (5) से,
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 45
\(\frac{a}{24}\) = \(\frac{b}{36}\) = \(\frac{c}{72}\)
\(\frac{a}{2}\) = \(\frac{b}{3}\) = \(\frac{c}{6}\) = k
a = 2k, b = 3k, c = -6k
बिन्दु (1, 2, -4) से होकर जाने वाली तथा सदिश 2\(\hat { i } \) + 3\(\hat { j } \) + 6\(\hat { k } \) के समान्तर रेखा का समीकरण होगा –
\(\vec { r } \) = (\(\hat { i } \) + 2\(\hat { j } \) – 4\(\hat { k } \) ) + t(2\(\hat { i } \) + 3\(\hat { j } \) + 6\(\hat { k } \) ).

MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति

प्रश्न 21.
एक सरल रेखा एक घन के चार विकर्णों के साथ क्रमश: कोण α, β, γ तथा δ बनाती है। सिद्ध कीजिए कि –
cos2α + cos2β + cos2γ + cos2δ = \(\frac{4}{3}\). (NCERT; म. प्र. 2005, 06)
हल:
a भुजा के घन की तीन संलग्न कोरों OA, OB और OC को निर्देशाक्ष लेने पर घन के शीर्षों के निर्देशांक निम्न प्रकार हैं:
O(0, 0, 0), A(a, 0, 0), B(0, a, 0), R(0, 0, a)
D(a, a, 0), K(a, 0, a), L(0, a, a), P(a, a, a)
विकर्ण OP के दिक् अनुपात a – 0, a – 0, a – 0 अर्थात् a, a, a हैं।
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 46
OP की दिक् कोज्याएँ हैं:
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 47
अर्थात् \(\frac { 1 }{ \sqrt { 3 } } \), \(\frac { 1 }{ \sqrt { 3 } } \), \(\frac { 1 }{ \sqrt { 3 } } \)
इसी प्रकार विक AL, BK तथा RD की दिक् कोज्याएँ
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 48
माना OP, BL, AK, CD के साथ क्रमशः α, β, γ, कोण बनने वाली रेखा की दिक् कोज्याएँ l, m, n हैं।
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 49
अतः cos2 α + cos2β + cos2δ
MP Board Class 12th Maths Important Questions Chapter 11 त्रि-विमीय ज्यामिति img 50
यही सिद्ध करना था।

MP Board Class 12th Maths Important Questions

Leave a Comment